The perturbation of symmetries and adiabatic invariants for mechanical systems with unilateral holonomic constraints are studied. The exact invariant in the form of Hojman led by special Lie symmetries for an undistur...The perturbation of symmetries and adiabatic invariants for mechanical systems with unilateral holonomic constraints are studied. The exact invariant in the form of Hojman led by special Lie symmetries for an undisturbed system with unilateral constraints is given. Based on the concept of high-order adiabatic invariant of mechanical systems, the perturbation of Lie symmetries for the system under the action of small disturbance is investigated, and a new adiabatic invariant for the system with unilateral holonomic constraints is obtained, which can be called Hojman adiabatic invariant. In the end of the paper, an example is given to illustrate the application of the results.展开更多
We determine the dependence of key inertial confinement fusion (ICF) hot spot properties on the deuterium-tritium (DT) fuel adiabat accomplished by addition of heat to the cold shell. Our main result is to observe...We determine the dependence of key inertial confinement fusion (ICF) hot spot properties on the deuterium-tritium (DT) fuel adiabat accomplished by addition of heat to the cold shell. Our main result is to observe that variation of this parameter reduces the simulation to experiment discrepancy in several experimentally inferred quantities. Simulations are continued from capsule only l D simulations using the Lawrence Livermore National Laboratory ICF code, HYDRA. The continuations employ the high energy density physics (HEDP) University of Chicago code, FLASH, and a hydro only code, FronTier, modified with a radiation equation of state (EOS) model. Hot spot densities, burn-weighted ion temperatures and pressures show a decreasing trend, while the hot spot radius shows an increasing trend in response to added heat to the cold shell. Instantaneous quantities are assessed at the time of maximum neutron production within each simulation.展开更多
Internal energy of real warm bodies can change their kinetic-potential energy balance on Keplerian orbits and relativistic geodesic. Chiral nature of the mass results in chirality of gravitons and their energy confine...Internal energy of real warm bodies can change their kinetic-potential energy balance on Keplerian orbits and relativistic geodesic. Chiral nature of the mass results in chirality of gravitons and their energy confinement within the constant energy charge of a moving thermodynamical body. Zero energy-momentum gravitons provide dissipative self-heating and spiral fall of massive stars on gravitating centers. Computed self-heating of the pulsar PSR B1913+16 quantitatively describes its period decay without an outward emission of metric waves in question. Deviation of warm bodies from geodesic trajectories of cold point matter complies with Einstein's directives toward pure field physics of material space plenum without metric singularities.展开更多
The present study deals with the numerical analysis of heat transfer inside a lithium bromide-water solution flowing down between finely meshed plastic wire screens. These screens confine the flow through capillary ac...The present study deals with the numerical analysis of heat transfer inside a lithium bromide-water solution flowing down between finely meshed plastic wire screens. These screens confine the flow through capillary action while allowing the water vapour transfer inside an innovative absorber technology. The complex menisci shape formed on the confinement grid level, where the surface tension forces are of first importance, are reconstructed by a volume-of-fluid model. A continuum surface force model is used to account for the surface tension force. A static contact angle is used to define the wall adhesion. A new algorithm, consisting to set an unique constant temperature at the liquid/vapour interface and to determine the evolution of heat transfer characteristics over the simulation domain, has been implemented and validated by analytical solution. A parametric study has been conducted to determine the effect of the geometry, the contact angle and the shape of the wire on the heat transfer.展开更多
Many birds join cooperative mobbing aggregations and collectively harass predators. Individuals participating in these ephemeral associations benefit by deterring the predator, but also incur energetic costs and incre...Many birds join cooperative mobbing aggregations and collectively harass predators. Individuals participating in these ephemeral associations benefit by deterring the predator, but also incur energetic costs and increased risk of predation. Ex- plaining the evolution of mobbing is challenging because individuals could prevail by selfishly seeking safety while allowing others to mob. An important step in understanding the evolution of mobbing is to identify factors affecting its expression. The ecological constraints model suggests that animals are more likely to cooperate under adverse environmental conditions, such as when local predation pressure is high. We tested this prediction by comparing the mobbing responses of several species of birds to the local abundance of their primary predator, the ferruginous pygmy-owl Glaucidium brasilianum. We used acoustic playback to elicit mobbing responses in environments where owls were common, uncommon, or rare. Stimuli were either the song of a fer- ruginous pygmy-owl or the mobbing calls of three of the owl's common prey species. During each playback, we characterized mobbing responses by noting the number of species and individuals that approached the loudspeaker, as well as the closest ap- proach by any bird. Mobbing responses to both stimuli were strong in locations where Ferruginous Pygmy-owls were common, intermediate where owls were uncommon, and weak where they were rare. This pattern persisted even after controlling for dif- ferences in species richness and composition among the three environments. Results support the ecological constraints model and provide strong evidence that intense predation pressure increases the expression of cooperative mobbing in tropical birds [Cur- rent Zoology 58 (5): 781-790, 2012].展开更多
基金The project supported by the Natural Science Foundation of High Education of Jiangsu Province under Grant No. 04KJA130135
文摘The perturbation of symmetries and adiabatic invariants for mechanical systems with unilateral holonomic constraints are studied. The exact invariant in the form of Hojman led by special Lie symmetries for an undisturbed system with unilateral constraints is given. Based on the concept of high-order adiabatic invariant of mechanical systems, the perturbation of Lie symmetries for the system under the action of small disturbance is investigated, and a new adiabatic invariant for the system with unilateral holonomic constraints is obtained, which can be called Hojman adiabatic invariant. In the end of the paper, an example is given to illustrate the application of the results.
文摘We determine the dependence of key inertial confinement fusion (ICF) hot spot properties on the deuterium-tritium (DT) fuel adiabat accomplished by addition of heat to the cold shell. Our main result is to observe that variation of this parameter reduces the simulation to experiment discrepancy in several experimentally inferred quantities. Simulations are continued from capsule only l D simulations using the Lawrence Livermore National Laboratory ICF code, HYDRA. The continuations employ the high energy density physics (HEDP) University of Chicago code, FLASH, and a hydro only code, FronTier, modified with a radiation equation of state (EOS) model. Hot spot densities, burn-weighted ion temperatures and pressures show a decreasing trend, while the hot spot radius shows an increasing trend in response to added heat to the cold shell. Instantaneous quantities are assessed at the time of maximum neutron production within each simulation.
文摘Internal energy of real warm bodies can change their kinetic-potential energy balance on Keplerian orbits and relativistic geodesic. Chiral nature of the mass results in chirality of gravitons and their energy confinement within the constant energy charge of a moving thermodynamical body. Zero energy-momentum gravitons provide dissipative self-heating and spiral fall of massive stars on gravitating centers. Computed self-heating of the pulsar PSR B1913+16 quantitatively describes its period decay without an outward emission of metric waves in question. Deviation of warm bodies from geodesic trajectories of cold point matter complies with Einstein's directives toward pure field physics of material space plenum without metric singularities.
文摘The present study deals with the numerical analysis of heat transfer inside a lithium bromide-water solution flowing down between finely meshed plastic wire screens. These screens confine the flow through capillary action while allowing the water vapour transfer inside an innovative absorber technology. The complex menisci shape formed on the confinement grid level, where the surface tension forces are of first importance, are reconstructed by a volume-of-fluid model. A continuum surface force model is used to account for the surface tension force. A static contact angle is used to define the wall adhesion. A new algorithm, consisting to set an unique constant temperature at the liquid/vapour interface and to determine the evolution of heat transfer characteristics over the simulation domain, has been implemented and validated by analytical solution. A parametric study has been conducted to determine the effect of the geometry, the contact angle and the shape of the wire on the heat transfer.
文摘Many birds join cooperative mobbing aggregations and collectively harass predators. Individuals participating in these ephemeral associations benefit by deterring the predator, but also incur energetic costs and increased risk of predation. Ex- plaining the evolution of mobbing is challenging because individuals could prevail by selfishly seeking safety while allowing others to mob. An important step in understanding the evolution of mobbing is to identify factors affecting its expression. The ecological constraints model suggests that animals are more likely to cooperate under adverse environmental conditions, such as when local predation pressure is high. We tested this prediction by comparing the mobbing responses of several species of birds to the local abundance of their primary predator, the ferruginous pygmy-owl Glaucidium brasilianum. We used acoustic playback to elicit mobbing responses in environments where owls were common, uncommon, or rare. Stimuli were either the song of a fer- ruginous pygmy-owl or the mobbing calls of three of the owl's common prey species. During each playback, we characterized mobbing responses by noting the number of species and individuals that approached the loudspeaker, as well as the closest ap- proach by any bird. Mobbing responses to both stimuli were strong in locations where Ferruginous Pygmy-owls were common, intermediate where owls were uncommon, and weak where they were rare. This pattern persisted even after controlling for dif- ferences in species richness and composition among the three environments. Results support the ecological constraints model and provide strong evidence that intense predation pressure increases the expression of cooperative mobbing in tropical birds [Cur- rent Zoology 58 (5): 781-790, 2012].