Numerical simulations were performed on flow and heat transfer performances of heat exchangers having six helical baffles of different baffle shapes and assembly configurations, i.e., two trisection baffle schemes, tw...Numerical simulations were performed on flow and heat transfer performances of heat exchangers having six helical baffles of different baffle shapes and assembly configurations, i.e., two trisection baffle schemes, two quadrant baffle schemes, and two continuous helical baffle schemes. The temperature contour or the pressure contour and velocity contour plots with superimposed velocity vectors on meridian, transverse and unfolded concentric hexagonal slices are presented to obtain a full angular view. For the six helix baffled heat exchangers,the different patterns of the single vortex secondary flow and the shortcut leakage flow were depicted as well as the heat transfer properties were compared. The results show that the optimum scheme among the six configurations is a circumferential overlap trisection helix baffled heat exchanger with a baffle incline angle of 20°(20°TCO) scheme with an anti-shortcut baffle structure, which exhibits the second highest pressure dropΔpo, the highest overall heat transfer coefficient K, shell-side heat transfer coefficient hoand shell-side average comprehensive index ho/Δpo.展开更多
The Gauss-Seidel method is effective to solve the traditional sparse linear system. In the paper, we define a class of sparse linear systems in iterative algorithm. The iterative method for linear system can be extend...The Gauss-Seidel method is effective to solve the traditional sparse linear system. In the paper, we define a class of sparse linear systems in iterative algorithm. The iterative method for linear system can be extended to the dummy sparse linear system. We apply the Gauss-Seidel method, which is one of the iterative methods for linear system, to the thermal model of floorplan of VLSI physical design. The experimental results of dummy sparse linear system are computed by using Gauss-Seidel method that have shown our theory analysis and extendibility. The iterative time of our incremental thermal model is 5 times faster than that of the inverting matrix method.展开更多
An asymptotic semi-analytical method for heat transfer in counter-flow honeycomb regenerator is proposed. By introducing a combined heat-transfer coefficient between the gas and solid phase, a heat transfer model is b...An asymptotic semi-analytical method for heat transfer in counter-flow honeycomb regenerator is proposed. By introducing a combined heat-transfer coefficient between the gas and solid phase, a heat transfer model is built based on the thin-walled assumption. The dimensionless thermal equation is deduced by considering solid heat conduction along the passage length. The asymptotic analysis is used for the small parameter of heat conduction term in equation. The first order asymptotic solution to temperature distribution under weak solid heat conduction is achieved after Laplace transformation through the multiple scales method and the symbolic manipulation function in MATLAB. Semi-analytical solutions agree with tests and finite-difference numerical results. It is proved possible for the asymptotic analysis to improve the effectiveness, economics and precision of thermal research on regenerator.展开更多
Objective To preliminarily observe the effects of cupping on localized skin temperature of patients with back pain.Methods A total of 43 patients with back pain were included in this study.They were treated with mediu...Objective To preliminarily observe the effects of cupping on localized skin temperature of patients with back pain.Methods A total of 43 patients with back pain were included in this study.They were treated with medium-sized cups with a volume of 260 mL The randomly selected Xinshu(心俞 BL 15)on one side(37 cases) was given cupping treatment while that on the other side as the control.And Shenshu(肾俞 BL 23)(6 cases) was treated in the same way.The thermal infrared imager was used to record the changes in localized skin temperature before and after cupping(for 10 minutes),and then comparison was made with that of the control side.Results After cupping,the localized skin temperature fell and then rose.When the cup was removed after retaining for 10 minutes,the localized skin temperature was(0.4±0.9) ℃(P=0.004) lower than that before cupping;10 minutes after cupping off,the localized skin temperature was(0.4±1.1) ℃(P=0.016) higher than that before cupping while(0.8±0.9) ℃ higher than that when cupping off.The skin surface temperature on the control side declined steadily.Conclusion After cupping treatment,the localized skin temperature fell and then rose while that of the control side declined steadily.It might be related to therapeutic effects.展开更多
Using molecular dynamics (MD) simulations, we have investigated the kinetics of the graphene edge folding process. The lower limit of the energy barrier is found to be -380 meV/A (or about 800 meV per edge atom) a...Using molecular dynamics (MD) simulations, we have investigated the kinetics of the graphene edge folding process. The lower limit of the energy barrier is found to be -380 meV/A (or about 800 meV per edge atom) and -50 meV/A (or about 120 meV per edge atom) for folding the edges of intrinsic clean single-layer graphene (SLG) and double-layer graphene (DLG), respectively. However, the edge folding barriers can be substantially reduced by imbalanced chemical adsorption, such as of H atoms, on the two sides of graphene along the edges. Our studies indicate that thermal folding is not feasible at room temperature (RT) for clean SLG and DLG edges and is feasible at high temperature only for DLG edges, whereas chemical folding (with adsorbates) of both SLG and DLG edges can be spontaneous at RT. These findings suggest that the folded edge structures of suspended graphene observed in some experiments are possibly due to the presence of adsorbates at the edges.展开更多
基金Supported by the National Natural Science Foundation of China(50976022,51276035)the Provincial Science and Technology Innovation and Transformation of Achievements of Special Fund Project of Jiangsu Province(BY2011155)
文摘Numerical simulations were performed on flow and heat transfer performances of heat exchangers having six helical baffles of different baffle shapes and assembly configurations, i.e., two trisection baffle schemes, two quadrant baffle schemes, and two continuous helical baffle schemes. The temperature contour or the pressure contour and velocity contour plots with superimposed velocity vectors on meridian, transverse and unfolded concentric hexagonal slices are presented to obtain a full angular view. For the six helix baffled heat exchangers,the different patterns of the single vortex secondary flow and the shortcut leakage flow were depicted as well as the heat transfer properties were compared. The results show that the optimum scheme among the six configurations is a circumferential overlap trisection helix baffled heat exchanger with a baffle incline angle of 20°(20°TCO) scheme with an anti-shortcut baffle structure, which exhibits the second highest pressure dropΔpo, the highest overall heat transfer coefficient K, shell-side heat transfer coefficient hoand shell-side average comprehensive index ho/Δpo.
文摘The Gauss-Seidel method is effective to solve the traditional sparse linear system. In the paper, we define a class of sparse linear systems in iterative algorithm. The iterative method for linear system can be extended to the dummy sparse linear system. We apply the Gauss-Seidel method, which is one of the iterative methods for linear system, to the thermal model of floorplan of VLSI physical design. The experimental results of dummy sparse linear system are computed by using Gauss-Seidel method that have shown our theory analysis and extendibility. The iterative time of our incremental thermal model is 5 times faster than that of the inverting matrix method.
基金Supported by Chinese National Programs for High Technology Research and Development (No. 2001AA514013)
文摘An asymptotic semi-analytical method for heat transfer in counter-flow honeycomb regenerator is proposed. By introducing a combined heat-transfer coefficient between the gas and solid phase, a heat transfer model is built based on the thin-walled assumption. The dimensionless thermal equation is deduced by considering solid heat conduction along the passage length. The asymptotic analysis is used for the small parameter of heat conduction term in equation. The first order asymptotic solution to temperature distribution under weak solid heat conduction is achieved after Laplace transformation through the multiple scales method and the symbolic manipulation function in MATLAB. Semi-analytical solutions agree with tests and finite-difference numerical results. It is proved possible for the asymptotic analysis to improve the effectiveness, economics and precision of thermal research on regenerator.
文摘Objective To preliminarily observe the effects of cupping on localized skin temperature of patients with back pain.Methods A total of 43 patients with back pain were included in this study.They were treated with medium-sized cups with a volume of 260 mL The randomly selected Xinshu(心俞 BL 15)on one side(37 cases) was given cupping treatment while that on the other side as the control.And Shenshu(肾俞 BL 23)(6 cases) was treated in the same way.The thermal infrared imager was used to record the changes in localized skin temperature before and after cupping(for 10 minutes),and then comparison was made with that of the control side.Results After cupping,the localized skin temperature fell and then rose.When the cup was removed after retaining for 10 minutes,the localized skin temperature was(0.4±0.9) ℃(P=0.004) lower than that before cupping;10 minutes after cupping off,the localized skin temperature was(0.4±1.1) ℃(P=0.016) higher than that before cupping while(0.8±0.9) ℃ higher than that when cupping off.The skin surface temperature on the control side declined steadily.Conclusion After cupping treatment,the localized skin temperature fell and then rose while that of the control side declined steadily.It might be related to therapeutic effects.
文摘Using molecular dynamics (MD) simulations, we have investigated the kinetics of the graphene edge folding process. The lower limit of the energy barrier is found to be -380 meV/A (or about 800 meV per edge atom) and -50 meV/A (or about 120 meV per edge atom) for folding the edges of intrinsic clean single-layer graphene (SLG) and double-layer graphene (DLG), respectively. However, the edge folding barriers can be substantially reduced by imbalanced chemical adsorption, such as of H atoms, on the two sides of graphene along the edges. Our studies indicate that thermal folding is not feasible at room temperature (RT) for clean SLG and DLG edges and is feasible at high temperature only for DLG edges, whereas chemical folding (with adsorbates) of both SLG and DLG edges can be spontaneous at RT. These findings suggest that the folded edge structures of suspended graphene observed in some experiments are possibly due to the presence of adsorbates at the edges.