Directly measuring the oxidative heat release intensity at low temperatures is difficult at present.We developed a new method based on heat conduction theory that directly measures heat release intensity of loose coal...Directly measuring the oxidative heat release intensity at low temperatures is difficult at present.We developed a new method based on heat conduction theory that directly measures heat release intensity of loose coal at low temperatures.Using this method, we calculated the oxidative heat release intensity of differently sized loose coals by comparing the temperature rise of the coal in nitrogen or an air environment.The results show that oxidation heat release intensity of Shenhua coal sized 0~15 mm is 0.001~0.03 W/m3 at 30~90 °C and increases with increasing temperature.The heat release intensity at a given temperature is larger for smaller sized coal.The temperature effect on heat release intensity is muted as the coal size increases.At lower temperature the change in heat release intensity as a function of size becomes smaller.These results show that the test system is usable for practical applications and is easy to operate and is capable of measuring mass samples.展开更多
The drawn copper wires have been analyzed by differential scanning calorimeter(DSC) and a new method, which uses DSC measurements to determine the Johnson-Mehl-Avrami-Kolmogorov(JMAK) exponent via introducing Arrheniu...The drawn copper wires have been analyzed by differential scanning calorimeter(DSC) and a new method, which uses DSC measurements to determine the Johnson-Mehl-Avrami-Kolmogorov(JMAK) exponent via introducing Arrhenius behavior and modifying the baseline of DSC curves, has been proposed. The results show that JMAK exponent and recrystallization activation energy of the drawn copper wires with a strain of 2.77 are about 2.39 and 125 k J/mol, respectively. The line linking the tangency points of DSC curve hypotenuse can be used as the baseline when calculating recrystallization fraction. The JMAK exponent obtained by the DSC method is in a good agreement with that obtained by microhardness measurements. Compared to traditional methods to measure the exponent, the proposed method is faster and less labor intensive.展开更多
基金Projects 50474067 supported by the National Natural Science Foundation of China2007KF11 by the State Key Laboratory of Coal Resources and Safety Mining
文摘Directly measuring the oxidative heat release intensity at low temperatures is difficult at present.We developed a new method based on heat conduction theory that directly measures heat release intensity of loose coal at low temperatures.Using this method, we calculated the oxidative heat release intensity of differently sized loose coals by comparing the temperature rise of the coal in nitrogen or an air environment.The results show that oxidation heat release intensity of Shenhua coal sized 0~15 mm is 0.001~0.03 W/m3 at 30~90 °C and increases with increasing temperature.The heat release intensity at a given temperature is larger for smaller sized coal.The temperature effect on heat release intensity is muted as the coal size increases.At lower temperature the change in heat release intensity as a function of size becomes smaller.These results show that the test system is usable for practical applications and is easy to operate and is capable of measuring mass samples.
基金Projects(51171135,51371132,51471123) supported by the National Natural Science Foundation of ChinaProjects(2012K07-08,2013KJXX-61) supported by Key Science and Technology Program of Shaanxi Province,ChinaProject(2013JC14) supported by the Education Department Foundation of Shaanxi Province,China
文摘The drawn copper wires have been analyzed by differential scanning calorimeter(DSC) and a new method, which uses DSC measurements to determine the Johnson-Mehl-Avrami-Kolmogorov(JMAK) exponent via introducing Arrhenius behavior and modifying the baseline of DSC curves, has been proposed. The results show that JMAK exponent and recrystallization activation energy of the drawn copper wires with a strain of 2.77 are about 2.39 and 125 k J/mol, respectively. The line linking the tangency points of DSC curve hypotenuse can be used as the baseline when calculating recrystallization fraction. The JMAK exponent obtained by the DSC method is in a good agreement with that obtained by microhardness measurements. Compared to traditional methods to measure the exponent, the proposed method is faster and less labor intensive.