A calculation formula of thermal-hydro-mechanical(THM)coupling crack initiation rate for brittle rock was derived based on the energy conservation law.The self-designed THM coupling fracture test with conductive adhe...A calculation formula of thermal-hydro-mechanical(THM)coupling crack initiation rate for brittle rock was derived based on the energy conservation law.The self-designed THM coupling fracture test with conductive adhesive electrical measurement method was applied to measuring the THM coupling crack propagation rate of brittle rock continuously.Research results show that both calculation and test results of crack initiation rate increased with increase of the temperature and the hydraulic pressure.They are almost in good agreement,which can prove validity of the calculation formula of THM coupling crack initiation rate.展开更多
Thermogravimetric study of rubber compositions (operating glove and catheter) in medical waste was carried out using the thermogravimetric analyser (TGA),at the heating rate of 20 ℃/min in a stream of N2.The resu...Thermogravimetric study of rubber compositions (operating glove and catheter) in medical waste was carried out using the thermogravimetric analyser (TGA),at the heating rate of 20 ℃/min in a stream of N2.The results indicate that the decomposition process of operating glove appears an obvious mass loss stage at 250-485 ℃,while catheter has two obvious stages at 240-510 ℃ and 655-800 ℃,respectively; both samples present endothermic pyrolysis reaction; the decomposition of operating glove and the first mass loss stage of catheter are in agreement with natural rubber pyrolysis; the second mass loss stage of catheter corresponds to CaCO3 decomposition.Based on the experimental results,a novel two-step four-reaction model was established to simulate the whole continuous processes,which could more satisfactorily describe and predict the pyrolysis processes of rubber compositions,being more mechanistic and conveniently serving for the engineering.展开更多
The natural attapulgite(NAPT)was disaggregated by high-pressure homogenization technology combined with extrusion process to prepare the attapulgite with disaggregated rod crystal bundles(DAPT)and large specific surfa...The natural attapulgite(NAPT)was disaggregated by high-pressure homogenization technology combined with extrusion process to prepare the attapulgite with disaggregated rod crystal bundles(DAPT)and large specific surface area of 133.7 m^(2)/g.NAPT and DAPT were incorporated into the silicone rubber to obtain the composite NAPTSR and DAPT-SR by mechanical blending method,respectively.After thermal oxidative ageing at 300℃ for 0.5 h,temperature for the 5%weight loss increased greatly from 385℃ of the neat silicone rubber to 396-399℃ with addition of NAPT and DAPT.NAPT and DAPT enhanced the interaction between the filler nanoparticles and rubber matrix thus inhibited the nanoparticle agglomeration.The conservation rate of the side methyl group in NAPT-SR and DAPT-SR was greatly improved after ageing.Therefore,the thermal oxidative degradation and ageing performance of the silicone rubber composites was significantly reinforced.Moreover,DAPT could greatly restrain the growth of nanoparticles after ageing.Therefore,DAPT-SR showed the better retention of tensile strength(40.6%),elongation at break(34.9%)and tear strength(30.1%)compared with the corresponding mechanical properties of the neat silicone rubber(10.6%,7.4%,and 5.0%)after ageing.展开更多
A new type of thermal stabilizer, antimony pent(isooctyl thioglycollate)(Sb(SCH2COOC8H17)5), was synthesized by using antimony trioxide, isooctanol and thioglycolic acid in 2 steps. Firstly, antimony trioxide was ox...A new type of thermal stabilizer, antimony pent(isooctyl thioglycollate)(Sb(SCH2COOC8H17)5), was synthesized by using antimony trioxide, isooctanol and thioglycolic acid in 2 steps. Firstly, antimony trioxide was oxidized into colloidal antimony peroxide. Then antimony peroxide and isooctyl thioglycollate reacted stoichiometrically for 2 h with the yield of 87%. This compound was used as thermal stabilizer for polyvinyl chloride(PVC). The results show that the thermal stability time is 52min at 200℃ by heat-ageing oven test when adding 2.5% thermal stabilizer to PVC resin. Compared with antimony tris(isooctyl thiolycollate), the initial thermal stability of antimony pent(isooctyl thioglycollate) is better than that of antimony tris(isooctyl thioglycollate), while the long-term thermal stability time is shorter than that of antimony tris(isooctyl thioglycollate). Meanwhile, the synergism of antimony pent(isooctyl thioglycollate) with calcium stearate was studied, indicating that when the mass ratio of antimony pent(isooctyl thioglycollate) to calcium stearate is (2∶1,) the thermal stability time of PVC is 58min.展开更多
By oxidative polycondensation of 1-naphthol and their copolycondensation with aniline or p-phenylenediamine the polyfucntional polyconjugated oligomers consisting of hydroxynaphthylene links have been prepared. These ...By oxidative polycondensation of 1-naphthol and their copolycondensation with aniline or p-phenylenediamine the polyfucntional polyconjugated oligomers consisting of hydroxynaphthylene links have been prepared. These soluble and meltable oligomers showing thermostability, semiconducting and paramagnetic properties and also high reactivity at reactions characteristic for aromatic hydroxyl groups were used as active filler at preparation of rubbers from butyl and butadiene-nitrile rubbers. It has been shown that in partial or full substitution of carbon black by oligohydroxynaphthylenes or cooligohydroxynaphthylenephenylamines in composition of vulcanizate the prepared rubbers are characterized by noticeably high heat-physical, physical-mechanical and electrical properties (Pv = 10^8 - 10^6Om. cm ).展开更多
A single phase of zirconium diboride (ZrB2) powder was successfully synthesized by sol-gel method in Zr-B-C-O system, using zirconium oxychloride (ZrOC12 ~ 8H20), nano-scale boron and suerose(C12H22011)as the st...A single phase of zirconium diboride (ZrB2) powder was successfully synthesized by sol-gel method in Zr-B-C-O system, using zirconium oxychloride (ZrOC12 ~ 8H20), nano-scale boron and suerose(C12H22011)as the starting materials and propylene oxide (PO) as complexing agent at a low temperature. Simultaneously, the experimen- tal and theoretical studies of ZrB2 synthesized by boro/carbothermal reduction from novel sol-gel technology were discussed. The results indicated that the pure rod-like ZrB2 powder without residual ZrO2 phase could be obtained with a B/Zr molar ratio of 3.5 at 1 400~C in argon atmosphere. Besides, in this study, a kinetic model for the Zr-B-C-O sys- tem producing ZrB2 by boro/carbothermal reaction was established based on thermodynamic analysis. It was also ob- served that, with the increase of reaction temperature, the reaction which produced ZrB2 powders changed from the borothermal reaction to boro/carbothermal reaction in the Zr-B-C-O system.展开更多
There have been few reports concerning the hydrothermal synthesis of silicon anode materials. In this manuscript, starting from the very cheap silica sol, we hydrothermally prepared porous silicon nanospheres in an au...There have been few reports concerning the hydrothermal synthesis of silicon anode materials. In this manuscript, starting from the very cheap silica sol, we hydrothermally prepared porous silicon nanospheres in an autoclave at 180 ℃. As anode materials for lithium-ion batteries (LIBs), the as-prepared nano-silicon anode without any carbon coating delivers a high reversible specific capacity of 2,650 mAh·g^-1 at 0.36 A·g^-1 and a significant cycling stability of about 950 mAh·g^-1 at 3.6 A·g^-1 during 500 cycles.展开更多
A novel copper-mediated solvothermal method was proposed for synthesizing colloidal spheres of a new composition, palladium iodide (PdI2). Typical procedure was designed to involve the introduction of cupric chlori...A novel copper-mediated solvothermal method was proposed for synthesizing colloidal spheres of a new composition, palladium iodide (PdI2). Typical procedure was designed to involve the introduction of cupric chloride (CuCI2) as weak oxidant. CuCI2 was found to be essential for preventing the easy formation of palladium deposits as well as facilitating the synthesis and assembly. Under the co-effect of CuC12 and the surfactant of polyvinylpyrrolidone (PVP), neutral PdI2 colloidal spheres with narrow size distribution were successfully produced. Such ion-assisted synthetic method is believed to be prospective in producing well-constructed nanostructures.展开更多
基金Project(51474251) supported by the National Natural Science Foundation of China
文摘A calculation formula of thermal-hydro-mechanical(THM)coupling crack initiation rate for brittle rock was derived based on the energy conservation law.The self-designed THM coupling fracture test with conductive adhesive electrical measurement method was applied to measuring the THM coupling crack propagation rate of brittle rock continuously.Research results show that both calculation and test results of crack initiation rate increased with increase of the temperature and the hydraulic pressure.They are almost in good agreement,which can prove validity of the calculation formula of THM coupling crack initiation rate.
基金Project(50378062)supported by the National Natural Science Foundation of ChinaProject(09JCYBJC08100)supported by the Natural Science Foundation of Tianjin Municipality,ChinaProject supported by Key Laboratory Program of the Ministry of Education,China
文摘Thermogravimetric study of rubber compositions (operating glove and catheter) in medical waste was carried out using the thermogravimetric analyser (TGA),at the heating rate of 20 ℃/min in a stream of N2.The results indicate that the decomposition process of operating glove appears an obvious mass loss stage at 250-485 ℃,while catheter has two obvious stages at 240-510 ℃ and 655-800 ℃,respectively; both samples present endothermic pyrolysis reaction; the decomposition of operating glove and the first mass loss stage of catheter are in agreement with natural rubber pyrolysis; the second mass loss stage of catheter corresponds to CaCO3 decomposition.Based on the experimental results,a novel two-step four-reaction model was established to simulate the whole continuous processes,which could more satisfactorily describe and predict the pyrolysis processes of rubber compositions,being more mechanistic and conveniently serving for the engineering.
基金supported by the Key Special Program on the S&T for the Pollution Control and Treatment of Water Bodies (No.2017ZX07603-003)。
文摘The natural attapulgite(NAPT)was disaggregated by high-pressure homogenization technology combined with extrusion process to prepare the attapulgite with disaggregated rod crystal bundles(DAPT)and large specific surface area of 133.7 m^(2)/g.NAPT and DAPT were incorporated into the silicone rubber to obtain the composite NAPTSR and DAPT-SR by mechanical blending method,respectively.After thermal oxidative ageing at 300℃ for 0.5 h,temperature for the 5%weight loss increased greatly from 385℃ of the neat silicone rubber to 396-399℃ with addition of NAPT and DAPT.NAPT and DAPT enhanced the interaction between the filler nanoparticles and rubber matrix thus inhibited the nanoparticle agglomeration.The conservation rate of the side methyl group in NAPT-SR and DAPT-SR was greatly improved after ageing.Therefore,the thermal oxidative degradation and ageing performance of the silicone rubber composites was significantly reinforced.Moreover,DAPT could greatly restrain the growth of nanoparticles after ageing.Therefore,DAPT-SR showed the better retention of tensile strength(40.6%),elongation at break(34.9%)and tear strength(30.1%)compared with the corresponding mechanical properties of the neat silicone rubber(10.6%,7.4%,and 5.0%)after ageing.
基金Project supported by the Postdoctoral Foundation of Central South University
文摘A new type of thermal stabilizer, antimony pent(isooctyl thioglycollate)(Sb(SCH2COOC8H17)5), was synthesized by using antimony trioxide, isooctanol and thioglycolic acid in 2 steps. Firstly, antimony trioxide was oxidized into colloidal antimony peroxide. Then antimony peroxide and isooctyl thioglycollate reacted stoichiometrically for 2 h with the yield of 87%. This compound was used as thermal stabilizer for polyvinyl chloride(PVC). The results show that the thermal stability time is 52min at 200℃ by heat-ageing oven test when adding 2.5% thermal stabilizer to PVC resin. Compared with antimony tris(isooctyl thiolycollate), the initial thermal stability of antimony pent(isooctyl thioglycollate) is better than that of antimony tris(isooctyl thioglycollate), while the long-term thermal stability time is shorter than that of antimony tris(isooctyl thioglycollate). Meanwhile, the synergism of antimony pent(isooctyl thioglycollate) with calcium stearate was studied, indicating that when the mass ratio of antimony pent(isooctyl thioglycollate) to calcium stearate is (2∶1,) the thermal stability time of PVC is 58min.
文摘By oxidative polycondensation of 1-naphthol and their copolycondensation with aniline or p-phenylenediamine the polyfucntional polyconjugated oligomers consisting of hydroxynaphthylene links have been prepared. These soluble and meltable oligomers showing thermostability, semiconducting and paramagnetic properties and also high reactivity at reactions characteristic for aromatic hydroxyl groups were used as active filler at preparation of rubbers from butyl and butadiene-nitrile rubbers. It has been shown that in partial or full substitution of carbon black by oligohydroxynaphthylenes or cooligohydroxynaphthylenephenylamines in composition of vulcanizate the prepared rubbers are characterized by noticeably high heat-physical, physical-mechanical and electrical properties (Pv = 10^8 - 10^6Om. cm ).
基金Supported by the Fund for the Self-dependent Innovation of Tianjin University(2014)
文摘A single phase of zirconium diboride (ZrB2) powder was successfully synthesized by sol-gel method in Zr-B-C-O system, using zirconium oxychloride (ZrOC12 ~ 8H20), nano-scale boron and suerose(C12H22011)as the starting materials and propylene oxide (PO) as complexing agent at a low temperature. Simultaneously, the experimen- tal and theoretical studies of ZrB2 synthesized by boro/carbothermal reduction from novel sol-gel technology were discussed. The results indicated that the pure rod-like ZrB2 powder without residual ZrO2 phase could be obtained with a B/Zr molar ratio of 3.5 at 1 400~C in argon atmosphere. Besides, in this study, a kinetic model for the Zr-B-C-O sys- tem producing ZrB2 by boro/carbothermal reaction was established based on thermodynamic analysis. It was also ob- served that, with the increase of reaction temperature, the reaction which produced ZrB2 powders changed from the borothermal reaction to boro/carbothermal reaction in the Zr-B-C-O system.
文摘There have been few reports concerning the hydrothermal synthesis of silicon anode materials. In this manuscript, starting from the very cheap silica sol, we hydrothermally prepared porous silicon nanospheres in an autoclave at 180 ℃. As anode materials for lithium-ion batteries (LIBs), the as-prepared nano-silicon anode without any carbon coating delivers a high reversible specific capacity of 2,650 mAh·g^-1 at 0.36 A·g^-1 and a significant cycling stability of about 950 mAh·g^-1 at 3.6 A·g^-1 during 500 cycles.
基金supported by the National Basic Program of China for Nanoscience and Nanotechnology (973 Program,2011CB932401)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (20921001)
文摘A novel copper-mediated solvothermal method was proposed for synthesizing colloidal spheres of a new composition, palladium iodide (PdI2). Typical procedure was designed to involve the introduction of cupric chloride (CuCI2) as weak oxidant. CuCI2 was found to be essential for preventing the easy formation of palladium deposits as well as facilitating the synthesis and assembly. Under the co-effect of CuC12 and the surfactant of polyvinylpyrrolidone (PVP), neutral PdI2 colloidal spheres with narrow size distribution were successfully produced. Such ion-assisted synthetic method is believed to be prospective in producing well-constructed nanostructures.