An experimental study of the thermal characteristics of an existing office building with double skin facade DSF were conducted in hot summer daytime in Nanjing China. The temperature distributions of the DSF and indoo...An experimental study of the thermal characteristics of an existing office building with double skin facade DSF were conducted in hot summer daytime in Nanjing China. The temperature distributions of the DSF and indoor environment were measured at different control modes of DSF.The results show that the energy consumption of the air conditioning system in room B with opened exterior vents a closed interior facade and an air cavity with shading was 21.0% less than that in room A with closed exterior vents a closed interior facade and air cavity without shading in 9.5 h. The temperature distributions of the DSF and indoor environment in both horizontal and vertical directions were decisively influenced by shading conditions. The usage of shading devices strengthens the stack effect on the air cavity. Compared to room A the temperature distribution in room B is more uniform with smaller fluctuations.Meanwhile the problem of overheating in the air cavity of the DSF is still present in all tested conditions.展开更多
The universal mathematical model of an engine is established,and an economical zone,in which an engine mainly provides medium output load at medium speed,is presented.Based on the experimental data and the universal m...The universal mathematical model of an engine is established,and an economical zone,in which an engine mainly provides medium output load at medium speed,is presented.Based on the experimental data and the universal model of such an engine above,a mathematical model of a refitted engine is provided.The boundary of the corresponding economical zone is further demarcated,and the optimal operating curve and the operating point of the engine are analyzed.Then,the energy transforming models of the power system are established in the mode of cooling,heating and power(MCHP),the mode of heating and power(MHP)and the mode of electricity powering(MEP).The parameter matching of the power system is optimized according to the transmission ratios of the gear box in the power distribution system.The results show that,in the MCHP,the speed transmission ratio of the engine to the gear box(ies)and the speed transmission ratio of the motor to the gear box(ims)are defined as 2.9 and 1,respectively;in the MHP,when the demand load of the power system is less than the low critical load of the economical zone,the speed transmission ratio of the motor to the engine(ime)is equal to 1,and when the demand load of the power system exceeds the low critical load of the economical zone,ime equals 0.85;in the MEP,the optimal value of ims is defined as 2.5.展开更多
We investigate quasi-local energy distribution and thermodynamics of the Reissner-Nordstr6m black hole space-time surrounded by quintessence. We use the quasi-local energy distribution from Einstein energy-momentum co...We investigate quasi-local energy distribution and thermodynamics of the Reissner-Nordstr6m black hole space-time surrounded by quintessence. We use the quasi-local energy distribution from Einstein energy-momentum complex. We plot the variation of the energies, temperature and heat capacity with the state parameter related to the quintessence ωq. We show that due to the presence of quintessence, the total energy of the outer region as well as the temperature and heat capacity decreases with the increase of the density of quintessence, while the total energy of the black hole region increases.展开更多
Elastic heat transfer tube bundles are widely used in the field of flow-induced vibration heat transfer enhancement. Two types of mainly used tube bundles, the planar elastic tube bundle and the conical spiral tube bu...Elastic heat transfer tube bundles are widely used in the field of flow-induced vibration heat transfer enhancement. Two types of mainly used tube bundles, the planar elastic tube bundle and the conical spiral tube bundle were comprehensively compared in the condition of the same shell side diameter. The natural mode characteristics, the effect of fluid-structure interaction, the stress distribution, the comprehensive heat transfer performance and the secondary fluid flow of the two elastic tube bundles were all concluded and compared. The results show that the natural frequency and the critical velocity of vibration buckling of the planar elastic tube bundle are larger than those of the conical spiral tube bundle, while the stress distribution and the comprehensive heat transfer performance of the conical spiral tube bundle are relatively better.展开更多
The model of heat source(MHS) which reflects the thermal interaction between materials and laser during processing determines the accuracy of simulation results. To acquire desirable simulations results, although vari...The model of heat source(MHS) which reflects the thermal interaction between materials and laser during processing determines the accuracy of simulation results. To acquire desirable simulations results, although various modifications of heat sources in the aspect of absorption process of laser by materials have been purposed, the distribution of laser power density(DLPD) in MHS is still modeled theoretically. However, in the actual situations of laser processing, the DLPD is definitely different from the ideal models. So, it is indispensable to build MHS using actual DLPD to improve the accuracy of simulation results. Besides, an automatic modeling method will be benefit to simplify the tedious pre-processing of simulations. This paper presents a modeling method and corresponding algorithm to model heat source using measured DLPD. This algorithm automatically processes original data to get modeling parameters and provides a step MHS combining with absorption models. Simulations and experiments of heat transfer in steel plates irradiated by laser prove the mothed and the step MHS. Moreover, the investigations of laser induced thermal-crack propagation in glass highlight the signification of modeling heat source based on actual DLPD and demonstrate the enormous application of this method in the simulation of laser processing.展开更多
The reaction heat effect analysis for the aromatization process of Liquefied Petroleum Gas (LPG) was completed in this paper. In order to characterize this complex reaction system, one set of independent reactions was...The reaction heat effect analysis for the aromatization process of Liquefied Petroleum Gas (LPG) was completed in this paper. In order to characterize this complex reaction system, one set of independent reactions was determined by means of atomic coefficient matrix method. Based on reaction thermodynamic and stoichiometric knowledge, the heat effect, Gibbs free energy change and equilibrium constant for each independent reaction was calculated for the specified conditions. Under these conditions, based on the initial and final composition data from LPG aromatization experiments, the actual extent of reaction for each independent reaction was determined. Furthermore, the global reaction heat and adiabatic temperature rise of LPG aromatization reaction system could be estimated. This work would provide a theoretical guidance for the design and scale-up of reactor for LPG aromatization process, as well as for the selection of proper operating conditions.展开更多
The fuel properties of coastal plant Xanthium sibiricum were investigated in thermogravimetrics.The distributed activation energy model was employed in the kinetic analysis and a simplified mathematical model that can...The fuel properties of coastal plant Xanthium sibiricum were investigated in thermogravimetrics.The distributed activation energy model was employed in the kinetic analysis and a simplified mathematical model that can predict the thermogravimetry curves was proposed.The results show that the initial decomposition temperature tends to increase with the heating rate.The distributed E values ranged from 169.08 to 177.43 kJ/mol,and the frequency factor values ranged from 6.59× 10~8 to 1.22×10^(12)/s at different conversion rates.Furthermore,the prediction made with the simplified mathematical model perfectly matched the experimental data,and the model was found to be simple and accurate for the prediction of devolatilization curves.展开更多
A combined conduction and radiation heat transfer model was used to simulate the heat transfer within wafer and investigate the effect of thermal transport properties on temperature non-uniformity within wafer surface...A combined conduction and radiation heat transfer model was used to simulate the heat transfer within wafer and investigate the effect of thermal transport properties on temperature non-uniformity within wafer surface. It is found that the increased conductivities in both doped and undoped regions help reduce the temperature difference across the wafer surface. However, the doped layer conductivity has little effect on the overall temperature distribution and difference. The temperature level and difference on the top surface drop suddenly when absorption coefficient changes from 104 to 103 m-1. When the absorption coefficient is less or equal to 103 m-1, the temperature level and difference do not change much. The emissivity has the dominant effect on the top surface temperature level and difference. Higher surface emissivity can easily increase the temperature level of the wafer surface. After using the improved property data, the overall temperature level reduces by about 200 K from the basis case. The results will help improve the current understanding of the energy transport in the rapid thermal processing and the wafer temperature monitor and control level.展开更多
The paper presents a general distributed model of a vertical U-tube direct expansion heat exchanger coupled with the ground. This model is developed for studying the dynamic thermal behavior of a buried heat exchanger...The paper presents a general distributed model of a vertical U-tube direct expansion heat exchanger coupled with the ground. This model is developed for studying the dynamic thermal behavior of a buried heat exchanger which is an integral part of a so-called direct expansion heat pump. The transient conservative equations of mass, momentum and energy considering single and two-phase flow of refrigerant are derived and presented. The diffusive heat exchange with the ground is treated using an analytical approach to treat short-time scale response of vertical boreholes based on an imposed temperature. The thermal interference between the two pipes of the heat exchanger is also considered. The mathematical equations of the model are numerically presented using a control volume formulation and the solution of the system of equations is obtained by successive iterations. The dynamic behavior of the evaporator is simulated and the numerical results are analyzed regarding spatial parameters distribution and thermal interference influence.展开更多
An experimental investigation was conducted to measure the temperature variation across the flow channel and to determine the performance of a natural convection solar air heater at various tilt angles from 15, 30 and...An experimental investigation was conducted to measure the temperature variation across the flow channel and to determine the performance of a natural convection solar air heater at various tilt angles from 15, 30 and 45°. The results of the temperature profile across the air gap showed that heat transfer from the absorber plate to the air stream was mainly by convection. At a particular section, mean air temperature could be calculated from the arithmetic mean of the temperature profile across the air gap to within ± 2 ℃. The axial air temperature distribution was non linear and did not increase much beyond 1 m of collector length. It tended to decrease towards the end of the collector. Overall glass, absorber plate and mean air temperatures over the entire length of the solar air heater could be determined by averaging the mean axial temperatures to within ± 2 ℃. The heater performed better as inclination increased.展开更多
The non-uniform concentrated solar flux distribution on the outer surface of the absorber tube can lead to large circumferential temperature difference and high local temperature of the absorber tube wall,which is one...The non-uniform concentrated solar flux distribution on the outer surface of the absorber tube can lead to large circumferential temperature difference and high local temperature of the absorber tube wall,which is one of the primary causes of parabolic trough solar receiver(PTR)failures.In this paper,a secondary reflector used as a homogenizing reflector(HR)in a conventional parabolic trough solar collector(PTSC)was recommended to homogenize the solar flux distribution and thus increase the reliability of the PTR.The design method of this new type PTSC with a HR was also proposed.Meanwhile,the concentrated solar flux distribution was calculated by adopting the Monte Carlo ray-trace(MCRT)method.Then,the coupled heat transfer process within the PTR was simulated by treating the solar flux calculated by the MCRT method as the heat flux boundary condition for the finite volume method model.The solar flux distribution on the outer surface of the absorber tube,the temperature field of the absorber tube wall,and the collector efficiency were analyzed in detail.It was revealed that the absorber tube could almost be heated uniformly in the PTSC with a HR.As a result,the circumferential temperature difference and the maximum temperature could be reduced significantly,while the efficiency tended to decrease slightly due to the inevitably increased optical loss.Under the conditions studied in this paper,although the collector efficiency decreased by about 4%,the circumferential temperature difference was reduced from about 25 to 3 K and the maximum temperature was reduced from667 to 661 K.展开更多
We study a simplified version of the Sachdev-Ye-Kitaev(SYK) model with real interactions by exact diagonalization. Instead of satisfying a continuous Gaussian distribution, the interaction strengths are assumed to be ...We study a simplified version of the Sachdev-Ye-Kitaev(SYK) model with real interactions by exact diagonalization. Instead of satisfying a continuous Gaussian distribution, the interaction strengths are assumed to be chosen from discrete values with a finite separation. A quantum phase transition from a chaotic state to an integrable state is observed by increasing the discrete separation. Below the critical value, the discrete model can well reproduce various physical quantities of the original SYK model,including the volume law of the ground-state entanglement, level distribution, thermodynamic entropy,and out-of-time-order correlation(OTOC) functions. For systems of size up to N=20, we find that the transition point increases with system size, indicating that a relatively weak randomness of interaction can stabilize the chaotic phase. Our findings significantly relax the stringent conditions for the realization of SYK model, and can reduce the complexity of various experimental proposals down to realistic ranges.展开更多
基金The National Natural Science Foundation of China(No.51308295,51206080)China Postdoctoral Science Foundation(No.2013M531368)
文摘An experimental study of the thermal characteristics of an existing office building with double skin facade DSF were conducted in hot summer daytime in Nanjing China. The temperature distributions of the DSF and indoor environment were measured at different control modes of DSF.The results show that the energy consumption of the air conditioning system in room B with opened exterior vents a closed interior facade and an air cavity with shading was 21.0% less than that in room A with closed exterior vents a closed interior facade and air cavity without shading in 9.5 h. The temperature distributions of the DSF and indoor environment in both horizontal and vertical directions were decisively influenced by shading conditions. The usage of shading devices strengthens the stack effect on the air cavity. Compared to room A the temperature distribution in room B is more uniform with smaller fluctuations.Meanwhile the problem of overheating in the air cavity of the DSF is still present in all tested conditions.
基金The Natural Science Foundation of Jiangsu Higher Education Institutions of China(No.2009112TSJ0124)
文摘The universal mathematical model of an engine is established,and an economical zone,in which an engine mainly provides medium output load at medium speed,is presented.Based on the experimental data and the universal model of such an engine above,a mathematical model of a refitted engine is provided.The boundary of the corresponding economical zone is further demarcated,and the optimal operating curve and the operating point of the engine are analyzed.Then,the energy transforming models of the power system are established in the mode of cooling,heating and power(MCHP),the mode of heating and power(MHP)and the mode of electricity powering(MEP).The parameter matching of the power system is optimized according to the transmission ratios of the gear box in the power distribution system.The results show that,in the MCHP,the speed transmission ratio of the engine to the gear box(ies)and the speed transmission ratio of the motor to the gear box(ims)are defined as 2.9 and 1,respectively;in the MHP,when the demand load of the power system is less than the low critical load of the economical zone,the speed transmission ratio of the motor to the engine(ime)is equal to 1,and when the demand load of the power system exceeds the low critical load of the economical zone,ime equals 0.85;in the MEP,the optimal value of ims is defined as 2.5.
文摘We investigate quasi-local energy distribution and thermodynamics of the Reissner-Nordstr6m black hole space-time surrounded by quintessence. We use the quasi-local energy distribution from Einstein energy-momentum complex. We plot the variation of the energies, temperature and heat capacity with the state parameter related to the quintessence ωq. We show that due to the presence of quintessence, the total energy of the outer region as well as the temperature and heat capacity decreases with the increase of the density of quintessence, while the total energy of the black hole region increases.
基金Projects(xjj2013104,08143063)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2011CB706606)supported by the National Basic Research Program of China
文摘Elastic heat transfer tube bundles are widely used in the field of flow-induced vibration heat transfer enhancement. Two types of mainly used tube bundles, the planar elastic tube bundle and the conical spiral tube bundle were comprehensively compared in the condition of the same shell side diameter. The natural mode characteristics, the effect of fluid-structure interaction, the stress distribution, the comprehensive heat transfer performance and the secondary fluid flow of the two elastic tube bundles were all concluded and compared. The results show that the natural frequency and the critical velocity of vibration buckling of the planar elastic tube bundle are larger than those of the conical spiral tube bundle, while the stress distribution and the comprehensive heat transfer performance of the conical spiral tube bundle are relatively better.
基金Project(2021YFF0500200) supported by the National Key R&D Program of ChinaProject(52105437) supported by the National Natural Science Foundation of China+1 种基金Project(202006120184) supported by the Heilongjiang Provincial Postdoctoral Science Foundation,ChinaProject(LBH-Z20054) supported by the China Scholarship Council。
文摘The model of heat source(MHS) which reflects the thermal interaction between materials and laser during processing determines the accuracy of simulation results. To acquire desirable simulations results, although various modifications of heat sources in the aspect of absorption process of laser by materials have been purposed, the distribution of laser power density(DLPD) in MHS is still modeled theoretically. However, in the actual situations of laser processing, the DLPD is definitely different from the ideal models. So, it is indispensable to build MHS using actual DLPD to improve the accuracy of simulation results. Besides, an automatic modeling method will be benefit to simplify the tedious pre-processing of simulations. This paper presents a modeling method and corresponding algorithm to model heat source using measured DLPD. This algorithm automatically processes original data to get modeling parameters and provides a step MHS combining with absorption models. Simulations and experiments of heat transfer in steel plates irradiated by laser prove the mothed and the step MHS. Moreover, the investigations of laser induced thermal-crack propagation in glass highlight the signification of modeling heat source based on actual DLPD and demonstrate the enormous application of this method in the simulation of laser processing.
文摘The reaction heat effect analysis for the aromatization process of Liquefied Petroleum Gas (LPG) was completed in this paper. In order to characterize this complex reaction system, one set of independent reactions was determined by means of atomic coefficient matrix method. Based on reaction thermodynamic and stoichiometric knowledge, the heat effect, Gibbs free energy change and equilibrium constant for each independent reaction was calculated for the specified conditions. Under these conditions, based on the initial and final composition data from LPG aromatization experiments, the actual extent of reaction for each independent reaction was determined. Furthermore, the global reaction heat and adiabatic temperature rise of LPG aromatization reaction system could be estimated. This work would provide a theoretical guidance for the design and scale-up of reactor for LPG aromatization process, as well as for the selection of proper operating conditions.
基金Supported by the National Key Technology R&D Program of China(Nos.2011BAD13B07,2013BAB01B00)
文摘The fuel properties of coastal plant Xanthium sibiricum were investigated in thermogravimetrics.The distributed activation energy model was employed in the kinetic analysis and a simplified mathematical model that can predict the thermogravimetry curves was proposed.The results show that the initial decomposition temperature tends to increase with the heating rate.The distributed E values ranged from 169.08 to 177.43 kJ/mol,and the frequency factor values ranged from 6.59× 10~8 to 1.22×10^(12)/s at different conversion rates.Furthermore,the prediction made with the simplified mathematical model perfectly matched the experimental data,and the model was found to be simple and accurate for the prediction of devolatilization curves.
基金Project(N110204015)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2012M510075)supported by the China Postdoctoral Science Foundation
文摘A combined conduction and radiation heat transfer model was used to simulate the heat transfer within wafer and investigate the effect of thermal transport properties on temperature non-uniformity within wafer surface. It is found that the increased conductivities in both doped and undoped regions help reduce the temperature difference across the wafer surface. However, the doped layer conductivity has little effect on the overall temperature distribution and difference. The temperature level and difference on the top surface drop suddenly when absorption coefficient changes from 104 to 103 m-1. When the absorption coefficient is less or equal to 103 m-1, the temperature level and difference do not change much. The emissivity has the dominant effect on the top surface temperature level and difference. Higher surface emissivity can easily increase the temperature level of the wafer surface. After using the improved property data, the overall temperature level reduces by about 200 K from the basis case. The results will help improve the current understanding of the energy transport in the rapid thermal processing and the wafer temperature monitor and control level.
文摘The paper presents a general distributed model of a vertical U-tube direct expansion heat exchanger coupled with the ground. This model is developed for studying the dynamic thermal behavior of a buried heat exchanger which is an integral part of a so-called direct expansion heat pump. The transient conservative equations of mass, momentum and energy considering single and two-phase flow of refrigerant are derived and presented. The diffusive heat exchange with the ground is treated using an analytical approach to treat short-time scale response of vertical boreholes based on an imposed temperature. The thermal interference between the two pipes of the heat exchanger is also considered. The mathematical equations of the model are numerically presented using a control volume formulation and the solution of the system of equations is obtained by successive iterations. The dynamic behavior of the evaporator is simulated and the numerical results are analyzed regarding spatial parameters distribution and thermal interference influence.
文摘An experimental investigation was conducted to measure the temperature variation across the flow channel and to determine the performance of a natural convection solar air heater at various tilt angles from 15, 30 and 45°. The results of the temperature profile across the air gap showed that heat transfer from the absorber plate to the air stream was mainly by convection. At a particular section, mean air temperature could be calculated from the arithmetic mean of the temperature profile across the air gap to within ± 2 ℃. The axial air temperature distribution was non linear and did not increase much beyond 1 m of collector length. It tended to decrease towards the end of the collector. Overall glass, absorber plate and mean air temperatures over the entire length of the solar air heater could be determined by averaging the mean axial temperatures to within ± 2 ℃. The heater performed better as inclination increased.
基金supported by the National Natural Science Foundation of China(Grant Nos.51176155 and 51306149)the Research Project of Chinese Ministry of Education(Grant No.113055A)
文摘The non-uniform concentrated solar flux distribution on the outer surface of the absorber tube can lead to large circumferential temperature difference and high local temperature of the absorber tube wall,which is one of the primary causes of parabolic trough solar receiver(PTR)failures.In this paper,a secondary reflector used as a homogenizing reflector(HR)in a conventional parabolic trough solar collector(PTSC)was recommended to homogenize the solar flux distribution and thus increase the reliability of the PTR.The design method of this new type PTSC with a HR was also proposed.Meanwhile,the concentrated solar flux distribution was calculated by adopting the Monte Carlo ray-trace(MCRT)method.Then,the coupled heat transfer process within the PTR was simulated by treating the solar flux calculated by the MCRT method as the heat flux boundary condition for the finite volume method model.The solar flux distribution on the outer surface of the absorber tube,the temperature field of the absorber tube wall,and the collector efficiency were analyzed in detail.It was revealed that the absorber tube could almost be heated uniformly in the PTSC with a HR.As a result,the circumferential temperature difference and the maximum temperature could be reduced significantly,while the efficiency tended to decrease slightly due to the inevitably increased optical loss.Under the conditions studied in this paper,although the collector efficiency decreased by about 4%,the circumferential temperature difference was reduced from about 25 to 3 K and the maximum temperature was reduced from667 to 661 K.
基金This work was supported by the National Natural Science Foundation of China(11434011,11522436,11774425,11704029)the National Key R&D Program of China(2018YFA0306501)+1 种基金the Beijing Natural Science Foundation(Z180013)the Research Funds of Renmin University of China(16XNLQ03 and 18XNLQ15)。
文摘We study a simplified version of the Sachdev-Ye-Kitaev(SYK) model with real interactions by exact diagonalization. Instead of satisfying a continuous Gaussian distribution, the interaction strengths are assumed to be chosen from discrete values with a finite separation. A quantum phase transition from a chaotic state to an integrable state is observed by increasing the discrete separation. Below the critical value, the discrete model can well reproduce various physical quantities of the original SYK model,including the volume law of the ground-state entanglement, level distribution, thermodynamic entropy,and out-of-time-order correlation(OTOC) functions. For systems of size up to N=20, we find that the transition point increases with system size, indicating that a relatively weak randomness of interaction can stabilize the chaotic phase. Our findings significantly relax the stringent conditions for the realization of SYK model, and can reduce the complexity of various experimental proposals down to realistic ranges.