This paper mainly deals with the reservoir on the heat and mass transfer and mass and energy balance in a geothermal field.On the basis of briefing the general characteristics of the reservoir and the supposition of t...This paper mainly deals with the reservoir on the heat and mass transfer and mass and energy balance in a geothermal field.On the basis of briefing the general characteristics of the reservoir and the supposition of the reservoir modeling,the paper emphasizes the mathematical descriptions of hydra thermal transportation and convection by two methods according to the different models,such as lumped parameter model and distributed parameter model.It is effective to use these models in simulating the heterogeneous,and anisotropical fracture reservoir for the designed lifetime of 15 years.展开更多
The research goal is to develop a new solar water heater system(SWHS) that uses a solar bubble pump instead of an electric pump.The pump is powered by the steam produced from an evacuated tube collector.Therefore,heat...The research goal is to develop a new solar water heater system(SWHS) that uses a solar bubble pump instead of an electric pump.The pump is powered by the steam produced from an evacuated tube collector.Therefore,heat could be transferred downward from the collector to a hot water storage tank.The designed system consists of two sets of heat-pipe evacuated tube collectors,a solar bubble pump installed at an upper level and a water storage tank with a heat exchanger at a lower level.Discharge heads of 1 and 5 m were tested.The bubble pump could operate at the collector temperature of about 90-100 ℃ and vapor gage pressure of 80-90 kPa.It is found that water circulation within the SWHS depends on the incident solar intensity and system discharge head.Experimental investigations are conducted to obtain the system thermal efficiencies from the hourly,daily and long-term performance tests.The thermal performance of the proposed system is compared with conventional solar water heaters.The results show that the proposed system achieves system characteristic efficiency of 10% higher than that of the conventional systems using electric pump if taking the consumption of electric power into account.And the former is a zero carbon system.展开更多
Thermal mass is currently evaluated with "admittance" which is the ability of the element to exchange heat with the environment and is based on specific heat capacity, thermal conductivity and density. The aim of th...Thermal mass is currently evaluated with "admittance" which is the ability of the element to exchange heat with the environment and is based on specific heat capacity, thermal conductivity and density. The aim of this study is to evaluate the effect of thermal properties namely, density, specific heat capacity and thermal conductivity on thermal mass. The objective of the study is to carry out laboratory experiments by measuring such thermal properties of concrete mixes with various percentages of GGBS (ground granulated blast furnace slag), PFA (pulverized fuel ash), and SF (silica fume) and RCA (recycled coarse aggregates). The results obtained from these tests would contribute to the evaluation of how such thermal properties influence the thermal admittance and hence the thermal mass performance of sustainable concrete elements in a building system.展开更多
Electrolytic manganese residue(EMR), a high volume byproduct resulting from the electrolytic manganese industry, was used as a cheap and abundant chemical source for preparing MnO2 and EMR-made calcium silicate hydrat...Electrolytic manganese residue(EMR), a high volume byproduct resulting from the electrolytic manganese industry, was used as a cheap and abundant chemical source for preparing MnO2 and EMR-made calcium silicate hydrate(EMR-CSH). The MnO2 is successfully synthesized from the metal cations extracted from EMR, which can effectively recycle the manganese in the EMR. By the combination of XRD, SEM and EDX analysis, the as-prepared MnO2 is found to exhibit a single-phase with the purity of 90.3%. Furthermore, EMR-CSH is synthesized from EMR via hydrothermal method. Based on the detailed analyses using XRD, FT-IR, FE-SEM, EDX and BET surface area measurement, the product synthesized under the optimum conditions(p H 12.0 and 100 °C) is identified to be a calcium silicate hydrate with a specific surface area of 205 m2/g incorporating the slag-derived metals(Al and Mg) in its structure. The as-synthesized material shows good adsorption properties for removal of Mn2+ and phosphate ions diluted in water, making it a promising candidate for efficient bulk wastewater treatment. This conversion process, which enables us to fabricate two different kinds of valuable materials from EMR at low cost and through convenient preparation steps, is surely beneficial from the viewpoint of the chemical and economical use of EMR.展开更多
We do a new Li-ion battery evaluation research on the effects of cell resistance and polariza- tion on the energy loss in batteries based on thermal property and heat generation behavior of battery. Series of 18650 ce...We do a new Li-ion battery evaluation research on the effects of cell resistance and polariza- tion on the energy loss in batteries based on thermal property and heat generation behavior of battery. Series of 18650 cells with different capacities and electrode materials are evalu- ated by measuring input and output energy which change with charge-discharge time and current. Based on the results of these tests, we build a model of energy loss in cells' charge- discharge process, which include Joule heat and polarization heat impact factors. It was reported that Joule heat was caused by cell resistance, which included De-resistance and reaction resistance, and reaction resistance could not be easily obtained through routine test method. Using this new method, we can get the total resistance R and the polarization parameter U. The relationship between R, η, and temperature is also investigated in order to build a general model for series of different Li-ion batteries, and the research can be used in the performance evaluation, state of charge prediction and the measuring of consistency of the batteries.展开更多
The nuclear industry needs of prediction of behavior and life-time, for a wide range of normal, off-normal and accident conditions for safe and economic operation. Among different thermo-mechanical properties that can...The nuclear industry needs of prediction of behavior and life-time, for a wide range of normal, off-normal and accident conditions for safe and economic operation. Among different thermo-mechanical properties that can be predictable, the knowledge on the radial temperature distribution of the UO2 (uranium dioxide) nuclear fuel during the operation of nuclear reactors is essential for safety as different mechanical and thermal-hydraulic thresholds should be respected. One of the attributes of the Brazilian CNEN (Nuclear Energy Commission) is to assess the performance of the fuel rods used in these reactors in high-bumup regimes. The effective removal of the heat generated in the fuel rods constitutes one of the primary points to consider in the design of nuclear reactors. One of the important physical parameters in the study of heat conduction from the nuclear fuel to the coolant in a PWR (pressurized water reactor) is its thermal conductivity. It is therefore desirable that the empirical models, updated for the calculation of thermal conductivity in the fuel region be developed from new sets of experimental data from the irradiated fuel rods in controlled environments This paper presents the obtained results of implementing of a new model for thermal conductivity of the UO2 in the FRAPCON code.展开更多
The overall problem with PV (photovoltaic) systems is the high cost for the photovoltaic modules. This makes it interesting to concentrate irradiation on the PV-module, thereby reducing the PV area necessary for obt...The overall problem with PV (photovoltaic) systems is the high cost for the photovoltaic modules. This makes it interesting to concentrate irradiation on the PV-module, thereby reducing the PV area necessary for obtaining the same amount of output power. The tracking capability of two-axes tracking unit driving a new concentrating paraboloid for electric and heat production have been evaluated. The reflecting optics consisting of flat mirrors provides uniform illumination on the absorber which is a good indication for optimised electrical production due to series connection of solar cells. The calculated optical efficiency of the system indicates that about 80% of the incident beam radiation is transferred to the absorber. Simulations of generated electrical and thermal energy from the evaluated photovoltaic thermal (PV/T) collector show the potential of obtaining high total energy efficiency.展开更多
A novel thennoelectric generating and performance measuring system (TGPMS) was designed and fabricated. TGPMS can not only achieve the function of thennoelectric generation, but also measure the thennoelectric perfo...A novel thennoelectric generating and performance measuring system (TGPMS) was designed and fabricated. TGPMS can not only achieve the function of thennoelectric generation, but also measure the thennoelectric performance parameters of the bismuth-telluride-based thennoelectric device accurately. These thennoelectric performance parameters mainly include the dependence of the Seebeck coefficient of the thennoelectric device on the device's temperature in the low temperature range (about 40 ~ 190~C ), and the dependence of the power output and thermoelectric conversion efficiency on the temperature dif- ference or output load. With the optimum load, the optimal value of the power output is 3.39W when the temperature difference reaches 231.2~C, and the optimal value of the conversion efficiency is 3.22% when the temperature difference reaches 208.9~C. TGPMS provides an experimental foundation for the application of the thennoelectric generators in the space field.展开更多
This study is aimed at the thermal analysis of sealant mortar (usually a mixtures of bentonite and cemem with addition of sand) used in geothermal cooling and heating. In particular, thermal conductivity and diffusi...This study is aimed at the thermal analysis of sealant mortar (usually a mixtures of bentonite and cemem with addition of sand) used in geothermal cooling and heating. In particular, thermal conductivity and diffusivity measurements were performed on differem sealant mixtures by using Hot Disk thermal constants analyzer in order to identify the interesting thermal properties of grouting materials. The grouting materials that we considered are of porous nature and, if used in the presence of groundwater, have different levels of imbibitions. It is important to know the thermal behavior of these materials at different water content. A first set of measurements was performed on a not-tinted material at room temperature; then the samples were led to saturation conditions by contact capillary imbibitions with a cotton wool layer moistened in water. The determination of thermal conductivity in these test conditions appears to be critical compared to the measuremems on non-timed sample. The thermal conductivity tests have revealed how the thermal behavior of the samples analyzed is essentially determined by the density and water content of the material: in fact, the thermal conductivity increases of two to three times the value of the not-tinted material.展开更多
The characteristics of an organic Rankin cycle designed to operate with a low temperature geothermal source and constant temperature cooling water supplied from freshwater ponds typical to those found near Waddan City...The characteristics of an organic Rankin cycle designed to operate with a low temperature geothermal source and constant temperature cooling water supplied from freshwater ponds typical to those found near Waddan City in the Al Jufrah region of Libya were examined. Two working fluids were examined and it was concluded that the most suitable for this application was R-245fa. The off design performance of the organic Rankine cycle was examined and it was shown that the cycle is controlled by the performance of the condenser which is cooling water side temperature limited.展开更多
As the operation time of heat exchanger is increased, the thermal performance of them is gradually degraded due to fouling generated by water-borne deposits which are known to reduce the thermal efficiencies. Currentl...As the operation time of heat exchanger is increased, the thermal performance of them is gradually degraded due to fouling generated by water-borne deposits which are known to reduce the thermal efficiencies. Currently, thermal performance management of heat exchangers is more importantly issued for long term operation. Therefore, the performance evaluation techniques are required to improve the present method for the integrity evaluation of heat exchangers because of the exclusion of fouling calculation and the uncertainty analysis. This paper describes the developed thermal performance evaluation technique applied to the safety-related heat exchangers such as component cooling heat exchangers in a nuclear power plants.展开更多
The energy consumption of buildings in urban areas is one of the greatest source of energy wasting and, consequently, ofincreasing of CO2 emission. Research is currently focused on the reduction of this consumption th...The energy consumption of buildings in urban areas is one of the greatest source of energy wasting and, consequently, ofincreasing of CO2 emission. Research is currently focused on the reduction of this consumption through the use of passive air-conditioning systems, that can be integrated with conventional systems and give rise to the so-called hybrid systems. Historically, these passive systems were developed in the Mediterranean and Middle East area. The research approach on this topic involves the application of design strategies and the development of computational tools and control systems. The development of the hybrid systems is the result of the synergy between current scientific knowledge, advanced manufacturing and information technology. In this study, a modular housing system has been investigated under different conditions. Simulations have been repeated, in order to identify the configuration that provides the highest indoor comfort. The analysis of the different conditions has been carried out using a CFD (computational fluid dynamic) software. The paper shows the results developed by the Dipartimento di Architettura of the Universit^t di Palermo in the analysis of the natural ventilation effect on the indoor comfort.展开更多
In this paper we present a performance evaluation of thermal spraying coated hot forging dies conducted in a production line. The High Velocity Oxy-Fuel process was used for the deposition of a tungsten carbide coatin...In this paper we present a performance evaluation of thermal spraying coated hot forging dies conducted in a production line. The High Velocity Oxy-Fuel process was used for the deposition of a tungsten carbide coating, which is characterized by its optimal adherence and low porosity. A metallurgical characterization of the layer was previously done, in order to obtain reference information to assist in the interpretation of the practical tests results. The coated die allowed an increase in productivity of 37.5%, besides better dimensional stability results through the process and legibility of printed numbers.展开更多
Based on the exergy-economic analysis of heat exchanger heat transfer and flow process, two new exergy- economic criteria which are defined as the total costs per unit heat transfer rate ηt for heat transfer exchange...Based on the exergy-economic analysis of heat exchanger heat transfer and flow process, two new exergy- economic criteria which are defined as the total costs per unit heat transfer rate ηt for heat transfer exchanger and the net profit per unit heat recovery rate ηr for heat recovery exchanger respectively are put forward. Furthermore , the application of criteria is illustrated by the evaluation of down-flow, counter-flow and cross-flow heat exchangers performance. The methods employed and results presented in this paper can serve as a guide for the performance evaluation of heat exchangers.展开更多
One-stream heat exchangers and one-stream heat exchanger networks are widely used in engineering. In this paper, the heat transfer performance evaluation of one-stream heat exchangers and one-stream heat exchanger net...One-stream heat exchangers and one-stream heat exchanger networks are widely used in engineering. In this paper, the heat transfer performance evaluation of one-stream heat exchangers and one-stream heat exchanger networks is analyzed with the concepts of entropy generation rate, entropy generation number, revised entropy generation number, entropy resistance, entransy dissipation rate, entransy dissipation number and generalized thermal resistance. For the analyzed one-stream heat exchangers, our numerical results show that the extremum value of the entransy dissipation rate and the minimum values of the entropy resistance and the generalized thermal resistance always lead to the largest heat transfer rate or the lowest temperature of the cooled object,while the minimum values of the other parameters do not always. For the analyzed one-stream heat exchanger networks, the minimizations of entransy dissipation rate, entransy dissipation number and generalized thermal resistance always correspond to the lowest average temperature of the cooled objects, while the minimizations of the other parameters do not. Therefore, only the extremum entransy dissipation principle and the minimum generalized thermal resistance principle are always applicable for the heat transfer performance evaluation of the systems in this paper, while the applicability of the other parameters is conditional.展开更多
文摘This paper mainly deals with the reservoir on the heat and mass transfer and mass and energy balance in a geothermal field.On the basis of briefing the general characteristics of the reservoir and the supposition of the reservoir modeling,the paper emphasizes the mathematical descriptions of hydra thermal transportation and convection by two methods according to the different models,such as lumped parameter model and distributed parameter model.It is effective to use these models in simulating the heterogeneous,and anisotropical fracture reservoir for the designed lifetime of 15 years.
基金Project(2011-0021376) supported by Basic Science Program through the National Research Foundation (NRF) Funded by the Ministry of Education,Science and Technology of Korea
文摘The research goal is to develop a new solar water heater system(SWHS) that uses a solar bubble pump instead of an electric pump.The pump is powered by the steam produced from an evacuated tube collector.Therefore,heat could be transferred downward from the collector to a hot water storage tank.The designed system consists of two sets of heat-pipe evacuated tube collectors,a solar bubble pump installed at an upper level and a water storage tank with a heat exchanger at a lower level.Discharge heads of 1 and 5 m were tested.The bubble pump could operate at the collector temperature of about 90-100 ℃ and vapor gage pressure of 80-90 kPa.It is found that water circulation within the SWHS depends on the incident solar intensity and system discharge head.Experimental investigations are conducted to obtain the system thermal efficiencies from the hourly,daily and long-term performance tests.The thermal performance of the proposed system is compared with conventional solar water heaters.The results show that the proposed system achieves system characteristic efficiency of 10% higher than that of the conventional systems using electric pump if taking the consumption of electric power into account.And the former is a zero carbon system.
文摘Thermal mass is currently evaluated with "admittance" which is the ability of the element to exchange heat with the environment and is based on specific heat capacity, thermal conductivity and density. The aim of this study is to evaluate the effect of thermal properties namely, density, specific heat capacity and thermal conductivity on thermal mass. The objective of the study is to carry out laboratory experiments by measuring such thermal properties of concrete mixes with various percentages of GGBS (ground granulated blast furnace slag), PFA (pulverized fuel ash), and SF (silica fume) and RCA (recycled coarse aggregates). The results obtained from these tests would contribute to the evaluation of how such thermal properties influence the thermal admittance and hence the thermal mass performance of sustainable concrete elements in a building system.
基金Project(21376273)supported by the National Natural Science Foundation of ChinaProject(2010FJ1011)supported by the Research Fund of Science and Technology of Hunan Province,China
文摘Electrolytic manganese residue(EMR), a high volume byproduct resulting from the electrolytic manganese industry, was used as a cheap and abundant chemical source for preparing MnO2 and EMR-made calcium silicate hydrate(EMR-CSH). The MnO2 is successfully synthesized from the metal cations extracted from EMR, which can effectively recycle the manganese in the EMR. By the combination of XRD, SEM and EDX analysis, the as-prepared MnO2 is found to exhibit a single-phase with the purity of 90.3%. Furthermore, EMR-CSH is synthesized from EMR via hydrothermal method. Based on the detailed analyses using XRD, FT-IR, FE-SEM, EDX and BET surface area measurement, the product synthesized under the optimum conditions(p H 12.0 and 100 °C) is identified to be a calcium silicate hydrate with a specific surface area of 205 m2/g incorporating the slag-derived metals(Al and Mg) in its structure. The as-synthesized material shows good adsorption properties for removal of Mn2+ and phosphate ions diluted in water, making it a promising candidate for efficient bulk wastewater treatment. This conversion process, which enables us to fabricate two different kinds of valuable materials from EMR at low cost and through convenient preparation steps, is surely beneficial from the viewpoint of the chemical and economical use of EMR.
文摘We do a new Li-ion battery evaluation research on the effects of cell resistance and polariza- tion on the energy loss in batteries based on thermal property and heat generation behavior of battery. Series of 18650 cells with different capacities and electrode materials are evalu- ated by measuring input and output energy which change with charge-discharge time and current. Based on the results of these tests, we build a model of energy loss in cells' charge- discharge process, which include Joule heat and polarization heat impact factors. It was reported that Joule heat was caused by cell resistance, which included De-resistance and reaction resistance, and reaction resistance could not be easily obtained through routine test method. Using this new method, we can get the total resistance R and the polarization parameter U. The relationship between R, η, and temperature is also investigated in order to build a general model for series of different Li-ion batteries, and the research can be used in the performance evaluation, state of charge prediction and the measuring of consistency of the batteries.
文摘The nuclear industry needs of prediction of behavior and life-time, for a wide range of normal, off-normal and accident conditions for safe and economic operation. Among different thermo-mechanical properties that can be predictable, the knowledge on the radial temperature distribution of the UO2 (uranium dioxide) nuclear fuel during the operation of nuclear reactors is essential for safety as different mechanical and thermal-hydraulic thresholds should be respected. One of the attributes of the Brazilian CNEN (Nuclear Energy Commission) is to assess the performance of the fuel rods used in these reactors in high-bumup regimes. The effective removal of the heat generated in the fuel rods constitutes one of the primary points to consider in the design of nuclear reactors. One of the important physical parameters in the study of heat conduction from the nuclear fuel to the coolant in a PWR (pressurized water reactor) is its thermal conductivity. It is therefore desirable that the empirical models, updated for the calculation of thermal conductivity in the fuel region be developed from new sets of experimental data from the irradiated fuel rods in controlled environments This paper presents the obtained results of implementing of a new model for thermal conductivity of the UO2 in the FRAPCON code.
文摘The overall problem with PV (photovoltaic) systems is the high cost for the photovoltaic modules. This makes it interesting to concentrate irradiation on the PV-module, thereby reducing the PV area necessary for obtaining the same amount of output power. The tracking capability of two-axes tracking unit driving a new concentrating paraboloid for electric and heat production have been evaluated. The reflecting optics consisting of flat mirrors provides uniform illumination on the absorber which is a good indication for optimised electrical production due to series connection of solar cells. The calculated optical efficiency of the system indicates that about 80% of the incident beam radiation is transferred to the absorber. Simulations of generated electrical and thermal energy from the evaluated photovoltaic thermal (PV/T) collector show the potential of obtaining high total energy efficiency.
基金the High Technology Research and Development Program of China(No2003AA005031)
文摘A novel thennoelectric generating and performance measuring system (TGPMS) was designed and fabricated. TGPMS can not only achieve the function of thennoelectric generation, but also measure the thennoelectric performance parameters of the bismuth-telluride-based thennoelectric device accurately. These thennoelectric performance parameters mainly include the dependence of the Seebeck coefficient of the thennoelectric device on the device's temperature in the low temperature range (about 40 ~ 190~C ), and the dependence of the power output and thermoelectric conversion efficiency on the temperature dif- ference or output load. With the optimum load, the optimal value of the power output is 3.39W when the temperature difference reaches 231.2~C, and the optimal value of the conversion efficiency is 3.22% when the temperature difference reaches 208.9~C. TGPMS provides an experimental foundation for the application of the thennoelectric generators in the space field.
文摘This study is aimed at the thermal analysis of sealant mortar (usually a mixtures of bentonite and cemem with addition of sand) used in geothermal cooling and heating. In particular, thermal conductivity and diffusivity measurements were performed on differem sealant mixtures by using Hot Disk thermal constants analyzer in order to identify the interesting thermal properties of grouting materials. The grouting materials that we considered are of porous nature and, if used in the presence of groundwater, have different levels of imbibitions. It is important to know the thermal behavior of these materials at different water content. A first set of measurements was performed on a not-tinted material at room temperature; then the samples were led to saturation conditions by contact capillary imbibitions with a cotton wool layer moistened in water. The determination of thermal conductivity in these test conditions appears to be critical compared to the measuremems on non-timed sample. The thermal conductivity tests have revealed how the thermal behavior of the samples analyzed is essentially determined by the density and water content of the material: in fact, the thermal conductivity increases of two to three times the value of the not-tinted material.
文摘The characteristics of an organic Rankin cycle designed to operate with a low temperature geothermal source and constant temperature cooling water supplied from freshwater ponds typical to those found near Waddan City in the Al Jufrah region of Libya were examined. Two working fluids were examined and it was concluded that the most suitable for this application was R-245fa. The off design performance of the organic Rankine cycle was examined and it was shown that the cycle is controlled by the performance of the condenser which is cooling water side temperature limited.
文摘As the operation time of heat exchanger is increased, the thermal performance of them is gradually degraded due to fouling generated by water-borne deposits which are known to reduce the thermal efficiencies. Currently, thermal performance management of heat exchangers is more importantly issued for long term operation. Therefore, the performance evaluation techniques are required to improve the present method for the integrity evaluation of heat exchangers because of the exclusion of fouling calculation and the uncertainty analysis. This paper describes the developed thermal performance evaluation technique applied to the safety-related heat exchangers such as component cooling heat exchangers in a nuclear power plants.
文摘The energy consumption of buildings in urban areas is one of the greatest source of energy wasting and, consequently, ofincreasing of CO2 emission. Research is currently focused on the reduction of this consumption through the use of passive air-conditioning systems, that can be integrated with conventional systems and give rise to the so-called hybrid systems. Historically, these passive systems were developed in the Mediterranean and Middle East area. The research approach on this topic involves the application of design strategies and the development of computational tools and control systems. The development of the hybrid systems is the result of the synergy between current scientific knowledge, advanced manufacturing and information technology. In this study, a modular housing system has been investigated under different conditions. Simulations have been repeated, in order to identify the configuration that provides the highest indoor comfort. The analysis of the different conditions has been carried out using a CFD (computational fluid dynamic) software. The paper shows the results developed by the Dipartimento di Architettura of the Universit^t di Palermo in the analysis of the natural ventilation effect on the indoor comfort.
文摘In this paper we present a performance evaluation of thermal spraying coated hot forging dies conducted in a production line. The High Velocity Oxy-Fuel process was used for the deposition of a tungsten carbide coating, which is characterized by its optimal adherence and low porosity. A metallurgical characterization of the layer was previously done, in order to obtain reference information to assist in the interpretation of the practical tests results. The coated die allowed an increase in productivity of 37.5%, besides better dimensional stability results through the process and legibility of printed numbers.
文摘Based on the exergy-economic analysis of heat exchanger heat transfer and flow process, two new exergy- economic criteria which are defined as the total costs per unit heat transfer rate ηt for heat transfer exchanger and the net profit per unit heat recovery rate ηr for heat recovery exchanger respectively are put forward. Furthermore , the application of criteria is illustrated by the evaluation of down-flow, counter-flow and cross-flow heat exchangers performance. The methods employed and results presented in this paper can serve as a guide for the performance evaluation of heat exchangers.
基金supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission(Grant No.KJ1710251)
文摘One-stream heat exchangers and one-stream heat exchanger networks are widely used in engineering. In this paper, the heat transfer performance evaluation of one-stream heat exchangers and one-stream heat exchanger networks is analyzed with the concepts of entropy generation rate, entropy generation number, revised entropy generation number, entropy resistance, entransy dissipation rate, entransy dissipation number and generalized thermal resistance. For the analyzed one-stream heat exchangers, our numerical results show that the extremum value of the entransy dissipation rate and the minimum values of the entropy resistance and the generalized thermal resistance always lead to the largest heat transfer rate or the lowest temperature of the cooled object,while the minimum values of the other parameters do not always. For the analyzed one-stream heat exchanger networks, the minimizations of entransy dissipation rate, entransy dissipation number and generalized thermal resistance always correspond to the lowest average temperature of the cooled objects, while the minimizations of the other parameters do not. Therefore, only the extremum entransy dissipation principle and the minimum generalized thermal resistance principle are always applicable for the heat transfer performance evaluation of the systems in this paper, while the applicability of the other parameters is conditional.