To improve the accuracy of skin temperature measurements in thermal comfort research,a new measurement method based on a new thermometer is proposed.A platinum film resistance(Pt1000)sensor of the thermometer is wel...To improve the accuracy of skin temperature measurements in thermal comfort research,a new measurement method based on a new thermometer is proposed.A platinum film resistance(Pt1000)sensor of the thermometer is welded on a printed circuit board to eliminate the heat loss from the leads and avoid the influence of the surrounding thermal environment.In order to determine the suitable thickness of the board,a steady heat conduction model is established.The simulation results reveal that when the thickness of the board is 0.2 mm,the influence of the surrounding air can be effectively prevented and the skin temperature does not obviously increase.The experimental results of verification show that the maximum measurement error of the skin temperature measured by the thermometer is 0.24 ℃,and the average measurement error of the skin temperature is 0.04 ℃.The proposed method provides an effective and reliable option for the skin temperature measurement in thermal comfort research.展开更多
A new electrical method of conductive carbon-film(with waterproof and anticorrosion ability)was proposed to continuously measure crack propagation rate of brittle rock under THMC coupling condition.A self-designed cou...A new electrical method of conductive carbon-film(with waterproof and anticorrosion ability)was proposed to continuously measure crack propagation rate of brittle rock under THMC coupling condition.A self-designed coupling testing system was used to conduct THMC coupling fracture tests of the pre-cracked red sandstone specimens(where the temperature is only changed)by this new electrical method of conductive carbon-film.Calculation results obtained by the energy method coincide well with the test results.And the higher the temperature is,the earlier the crack is initiated and the larger the crack propagation rate and accelerated velocity are,which can prove the validity of the new electrical method.This new electrical method has advantages of continuously measuring crack propagation rate over the conventional electrical,optical and acoustic methods,and can provide important basis for safety assessment and cracking-arrest design of deep rock mass engineering.展开更多
Thickness of falling water film out of tubes is one of critical factors of heat transfer of evaporative air cooler. A new method of resistance measurement was developed to measure thickness of the film. When the resis...Thickness of falling water film out of tubes is one of critical factors of heat transfer of evaporative air cooler. A new method of resistance measurement was developed to measure thickness of the film. When the resistance probe on the tip of micrometer touches the surface and bottom of the film, two corresponding sudden reductions of resistance occurs, and the difference of two graduations on the micrometer displays the thickness of the film. The film thickness of eleven angles was measured in five kinds of water flows and results varies from 0.8933mm to 1.7233 mm. Mean thickness and mean heat transfer coefficient of the film out of the tube was calculated.展开更多
Ultrafast electron diffraction (UED) is a rapidly advancing technique capable of recording the atomic-detail structural dynamics in real time. We report the establishment of the first UED system in China. Employing ...Ultrafast electron diffraction (UED) is a rapidly advancing technique capable of recording the atomic-detail structural dynamics in real time. We report the establishment of the first UED system in China. Employing this UED apparatus, both the coherent and the concurrent thermal lattice motions in an aluminium thin-film, trigged by ultrafast laser heating, have been observed. These results demonstrate its ability to directly measure a sub-milli-angstrom lattice spacing change on a sub-picosecond time scale.展开更多
The micro-Raman method is a non-contact and non-destructive method for thermal conductivity measurement.To reduce the measurement error induced by the poor fit of the basic equation of the original micro-Raman method,...The micro-Raman method is a non-contact and non-destructive method for thermal conductivity measurement.To reduce the measurement error induced by the poor fit of the basic equation of the original micro-Raman method,we developed a new basic equation for the heat source of a Gaussian laser beam.Based on the new basic equation,an analytical heat transfer model has been built to extend the original micro-Raman method to thin films with submicrometer-or nanometer-scale thickness.Ex-periments were performed to measure the thermal conductivity of dielectric thin films with submicrometer-or nanometer-scale thickness.The thermal resistance of the interface between dielectric thin films and their silicon substrate was also obtained.The obtained thermal conductivity of silicon dioxide film is 1.23W/(m.K),and the interface thermal resistance between silicon dioxide film and substrate is 2.35×10-8m2.K/W.The thermal conductivity and interface thermal resistance of silicon nitride film are 1.07W/(m.K)and 3.69×10-8m2.K/W,respectively.The experimental results are consistent with reported data.展开更多
基金The National Natural Science Foundation of China(No.50878125)
文摘To improve the accuracy of skin temperature measurements in thermal comfort research,a new measurement method based on a new thermometer is proposed.A platinum film resistance(Pt1000)sensor of the thermometer is welded on a printed circuit board to eliminate the heat loss from the leads and avoid the influence of the surrounding thermal environment.In order to determine the suitable thickness of the board,a steady heat conduction model is established.The simulation results reveal that when the thickness of the board is 0.2 mm,the influence of the surrounding air can be effectively prevented and the skin temperature does not obviously increase.The experimental results of verification show that the maximum measurement error of the skin temperature measured by the thermometer is 0.24 ℃,and the average measurement error of the skin temperature is 0.04 ℃.The proposed method provides an effective and reliable option for the skin temperature measurement in thermal comfort research.
基金Projects(51474251,51874351) supported by the National Natural Science Foundation of China
文摘A new electrical method of conductive carbon-film(with waterproof and anticorrosion ability)was proposed to continuously measure crack propagation rate of brittle rock under THMC coupling condition.A self-designed coupling testing system was used to conduct THMC coupling fracture tests of the pre-cracked red sandstone specimens(where the temperature is only changed)by this new electrical method of conductive carbon-film.Calculation results obtained by the energy method coincide well with the test results.And the higher the temperature is,the earlier the crack is initiated and the larger the crack propagation rate and accelerated velocity are,which can prove the validity of the new electrical method.This new electrical method has advantages of continuously measuring crack propagation rate over the conventional electrical,optical and acoustic methods,and can provide important basis for safety assessment and cracking-arrest design of deep rock mass engineering.
基金Acknowledgments: The study is one of branches of a key project of Chinese National Programs for Foundation Research and Development, thanks for the supporting from the National Nature Science Foundation. The new method to measure thickness of wager film has applied an utility model patent in China (No. 200620098211.4).
文摘Thickness of falling water film out of tubes is one of critical factors of heat transfer of evaporative air cooler. A new method of resistance measurement was developed to measure thickness of the film. When the resistance probe on the tip of micrometer touches the surface and bottom of the film, two corresponding sudden reductions of resistance occurs, and the difference of two graduations on the micrometer displays the thickness of the film. The film thickness of eleven angles was measured in five kinds of water flows and results varies from 0.8933mm to 1.7233 mm. Mean thickness and mean heat transfer coefficient of the film out of the tube was calculated.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10728409, 10734130, 10735050 and 60621063, and the National Basic Research Programme of China under Grant No 2007CB815102.
文摘Ultrafast electron diffraction (UED) is a rapidly advancing technique capable of recording the atomic-detail structural dynamics in real time. We report the establishment of the first UED system in China. Employing this UED apparatus, both the coherent and the concurrent thermal lattice motions in an aluminium thin-film, trigged by ultrafast laser heating, have been observed. These results demonstrate its ability to directly measure a sub-milli-angstrom lattice spacing change on a sub-picosecond time scale.
基金supported by the State Key Program of National Natural Science Foundation of China(No. 50335010)the Zhejiang Provincial Natural Science Foundation(No.R105008),China
文摘The micro-Raman method is a non-contact and non-destructive method for thermal conductivity measurement.To reduce the measurement error induced by the poor fit of the basic equation of the original micro-Raman method,we developed a new basic equation for the heat source of a Gaussian laser beam.Based on the new basic equation,an analytical heat transfer model has been built to extend the original micro-Raman method to thin films with submicrometer-or nanometer-scale thickness.Ex-periments were performed to measure the thermal conductivity of dielectric thin films with submicrometer-or nanometer-scale thickness.The thermal resistance of the interface between dielectric thin films and their silicon substrate was also obtained.The obtained thermal conductivity of silicon dioxide film is 1.23W/(m.K),and the interface thermal resistance between silicon dioxide film and substrate is 2.35×10-8m2.K/W.The thermal conductivity and interface thermal resistance of silicon nitride film are 1.07W/(m.K)and 3.69×10-8m2.K/W,respectively.The experimental results are consistent with reported data.