Catalytic converting CO2 into fuels with the help of solar energy is regarded as‘dream reaction’,as both energy crisis and environmental issue can be mitigated simultaneously.However,it is still suffering from low e...Catalytic converting CO2 into fuels with the help of solar energy is regarded as‘dream reaction’,as both energy crisis and environmental issue can be mitigated simultaneously.However,it is still suffering from low efficiency due to narrow solar-spectrum utilization and sluggish heterogeneous reaction kinetics.In this work,we demonstrate that catalytic reduction of CO2 can be achieved over Au nanoparticles(NPs)deposited rutile under full solar-spectrum irradiation,boosted by solar-heating effect.We found that UV and visible light can initiate the reaction,and the heat from IR light and local surface-plasmon resonance relaxation of Au NPs can boost the reaction kinetically.The apparent activation energy is determined experimentally and is used to explain the superior catalytic activity of Au/rutile to rutile in a kinetic way.We also find the photo-thermal synergy in the Au/rutile system.We envision that this work may facilitate understanding the kinetics of CO2 reduction and developing feasible catalytic systems with full solar spectrum utilization for practical artificial photosynthesis.展开更多
The solid-state magnetic cooling(MC)method based on the magnetocaloric effect(MCE)is recognized as an environmentally friendly and high-energy-efficiency technology.The search or design of suitable magnetic materials ...The solid-state magnetic cooling(MC)method based on the magnetocaloric effect(MCE)is recognized as an environmentally friendly and high-energy-efficiency technology.The search or design of suitable magnetic materials with large MCEs is one of the main targets at present.In this work,we apply the chemical and hydrostatic pressures in the Ni_(35)Co_(15)Mn_(35-x)Fe_(x)Ti_(15) all-d-metal Heusler alloys and systematically investigate their crystal structures,phases,and magnetocaloric performances experimentally and theoretically.All the alloys are found to crystallize in an ordered B2-type structure at room temperature and the atoms of Fe are confirmed to all occupy at sites Mn(B).The total magnetic moments decrease gradually with increasing Fe content and decreasing of volume as well.The martensitic transformation temperature decreases with the increase of Fe content,whereas increases with increasing hydrostatic pressure.Moreover,obviously enhanced magnetocaloric performances can also be obtained by applied pressures.The maximum values of magnetic entropy change and refrigeration capacity are as high as 15.61(24.20)J(kg K)^(−1) and 109.91(347.26)J kg^(−1) withΔH=20(50)kOe,respectively.These magnetocaloric performances are superior to most of the recently reported famous materials,indicating the potential application for active MC.展开更多
OBJECTIVE: To test the in vitro antiviral activity of a crude tissue extract (CTE/from the earthworm Eisenia fetida, determine any effective components in the CTE, andelucidate possiblemechanismsofaction. METHODS: ...OBJECTIVE: To test the in vitro antiviral activity of a crude tissue extract (CTE/from the earthworm Eisenia fetida, determine any effective components in the CTE, andelucidate possiblemechanismsofaction. METHODS: A CTE was made by homogenizing earthworms, followed by treatment with ammoni- um sulfate, then thermal denaturation. Inhibition of virus-induced cytopathic effect (CPE) was used to assess antiviral activity. Chromatographic analy- sis was used to identify effective components in the CTE. RESULTS: The CTE inhibited viral CPE at non-cyto- toxic concentrations. Chromatography indicated that antiviral components corresponded to three active peaks indicative of proteases, nucleases and lysozymes. For adenoviruses, reduction in viral ac- tivity occurred for 100 lag/mL CTE. The reduction in adenoviral activity for four fractions was 100%, 91.8%, 86.9%, and 94.7%. For influenza viruses, re- duction in viral activity of 100%, 86.6%, 69.1% and 88.3% was observed for 37 pg/mL CTE. In addition, three active fractions mixture had stronger antiviral activity (98.7% and 96.7%) than three fractions alone.Gel electrophoresis results indicated that nu- cleases from E. fetida could degrade the genome of influenza viruses and adenoviruses. CONCLUSION: The earthworm CTE displayed non-specific antiviral properties, possibly mediated by a combination of proteases, nucleases and lyso- zymes. Nucleases likely participate in the antiviral process, and degrade the genome of the virus thereby preventing further replication.展开更多
基金supported by the Belt and Road Initiative by Chinese Academy of Sciencesthe National Natural Science Foundation of China(21673052,11404074)
文摘Catalytic converting CO2 into fuels with the help of solar energy is regarded as‘dream reaction’,as both energy crisis and environmental issue can be mitigated simultaneously.However,it is still suffering from low efficiency due to narrow solar-spectrum utilization and sluggish heterogeneous reaction kinetics.In this work,we demonstrate that catalytic reduction of CO2 can be achieved over Au nanoparticles(NPs)deposited rutile under full solar-spectrum irradiation,boosted by solar-heating effect.We found that UV and visible light can initiate the reaction,and the heat from IR light and local surface-plasmon resonance relaxation of Au NPs can boost the reaction kinetically.The apparent activation energy is determined experimentally and is used to explain the superior catalytic activity of Au/rutile to rutile in a kinetic way.We also find the photo-thermal synergy in the Au/rutile system.We envision that this work may facilitate understanding the kinetics of CO2 reduction and developing feasible catalytic systems with full solar spectrum utilization for practical artificial photosynthesis.
基金supported by the National Natural Science Foundation of China(52001102 and 91963123)the Ten Thousand Talents Plan of Zhejiang Province of China(2018R52003)the Fundamental Research Funds for the Provincial University of Zhejiang(GK199900299012-022)。
文摘The solid-state magnetic cooling(MC)method based on the magnetocaloric effect(MCE)is recognized as an environmentally friendly and high-energy-efficiency technology.The search or design of suitable magnetic materials with large MCEs is one of the main targets at present.In this work,we apply the chemical and hydrostatic pressures in the Ni_(35)Co_(15)Mn_(35-x)Fe_(x)Ti_(15) all-d-metal Heusler alloys and systematically investigate their crystal structures,phases,and magnetocaloric performances experimentally and theoretically.All the alloys are found to crystallize in an ordered B2-type structure at room temperature and the atoms of Fe are confirmed to all occupy at sites Mn(B).The total magnetic moments decrease gradually with increasing Fe content and decreasing of volume as well.The martensitic transformation temperature decreases with the increase of Fe content,whereas increases with increasing hydrostatic pressure.Moreover,obviously enhanced magnetocaloric performances can also be obtained by applied pressures.The maximum values of magnetic entropy change and refrigeration capacity are as high as 15.61(24.20)J(kg K)^(−1) and 109.91(347.26)J kg^(−1) withΔH=20(50)kOe,respectively.These magnetocaloric performances are superior to most of the recently reported famous materials,indicating the potential application for active MC.
文摘OBJECTIVE: To test the in vitro antiviral activity of a crude tissue extract (CTE/from the earthworm Eisenia fetida, determine any effective components in the CTE, andelucidate possiblemechanismsofaction. METHODS: A CTE was made by homogenizing earthworms, followed by treatment with ammoni- um sulfate, then thermal denaturation. Inhibition of virus-induced cytopathic effect (CPE) was used to assess antiviral activity. Chromatographic analy- sis was used to identify effective components in the CTE. RESULTS: The CTE inhibited viral CPE at non-cyto- toxic concentrations. Chromatography indicated that antiviral components corresponded to three active peaks indicative of proteases, nucleases and lysozymes. For adenoviruses, reduction in viral ac- tivity occurred for 100 lag/mL CTE. The reduction in adenoviral activity for four fractions was 100%, 91.8%, 86.9%, and 94.7%. For influenza viruses, re- duction in viral activity of 100%, 86.6%, 69.1% and 88.3% was observed for 37 pg/mL CTE. In addition, three active fractions mixture had stronger antiviral activity (98.7% and 96.7%) than three fractions alone.Gel electrophoresis results indicated that nu- cleases from E. fetida could degrade the genome of influenza viruses and adenoviruses. CONCLUSION: The earthworm CTE displayed non-specific antiviral properties, possibly mediated by a combination of proteases, nucleases and lyso- zymes. Nucleases likely participate in the antiviral process, and degrade the genome of the virus thereby preventing further replication.