Biomass is a kind of renewable energy which is used increasingly in different types of combustion systems or in the production of fuels like bio-oil. Lycopodium is a cellulosic particle, with good combustion propertie...Biomass is a kind of renewable energy which is used increasingly in different types of combustion systems or in the production of fuels like bio-oil. Lycopodium is a cellulosic particle, with good combustion properties, of which microscopic images show that these particles have spherical shapes with identical diameters of 31 μm. The measured density of these particles is 1.0779 g/cm2. Lycopodium particles contain 64.06% carbon, 25.56% oxygen, 8.55% hydrogen and 1.83% nitrogen, and no sulfur. Thermogravimetric analysis in the nitrogen environment indicates that the maximum of particle mass reduction occurs in the temperature range of 250-550 ℃ where the maximum mass reduction in the DTG diagrams also occurs in. In the oxygen environment, an additional peak can also be observed in the temperature range of 500-600 ℃, which points to solid phase combustion and ignition temperature of lycopodium particles. The kinetics of reactions is determined by curve fitting and minimization of error.展开更多
Catalytic conversion of sustainable cellulose to the value-added chemicals and high quality biofuel has been recognized as a perfect approach for the alleviation of the dependence on the non-renewable fossil resources...Catalytic conversion of sustainable cellulose to the value-added chemicals and high quality biofuel has been recognized as a perfect approach for the alleviation of the dependence on the non-renewable fossil resources. Previously, we successfully de- signed and explored novel and efficient cooperative ionic liquid pairs for this renewable material, which has advantages of high reactor efficiency than current technologies because of the dissolution and in situ catalytic decomposition mechanism. Here, the determinant of this process is further studied by the intensive investigation on the relationship between the cellulose conversion and the properties of ionic liquid catalyst and solvent. Scanning electron microscope (SEM), thermogravimetric analysis (TG) and elemental analysis were used for the comparative characterization of raw cellulose and the residues. The re- suits demonstrate that this consecutive dissolution and in situ catalysis process is much more dependent on the dissolution ca- pability of ionic liquid solvent, while comparatively, the effect of in situ acid catalysis is relatively insignificant.展开更多
基金supported by the Ministry of Science, Research & Technology of Iran
文摘Biomass is a kind of renewable energy which is used increasingly in different types of combustion systems or in the production of fuels like bio-oil. Lycopodium is a cellulosic particle, with good combustion properties, of which microscopic images show that these particles have spherical shapes with identical diameters of 31 μm. The measured density of these particles is 1.0779 g/cm2. Lycopodium particles contain 64.06% carbon, 25.56% oxygen, 8.55% hydrogen and 1.83% nitrogen, and no sulfur. Thermogravimetric analysis in the nitrogen environment indicates that the maximum of particle mass reduction occurs in the temperature range of 250-550 ℃ where the maximum mass reduction in the DTG diagrams also occurs in. In the oxygen environment, an additional peak can also be observed in the temperature range of 500-600 ℃, which points to solid phase combustion and ignition temperature of lycopodium particles. The kinetics of reactions is determined by curve fitting and minimization of error.
基金supported by the National Natural Science Foundation of China (N21336002, 51306191, 21276094)the Natural Science Foundation of Guangdong Province, China (2015A030311048)
文摘Catalytic conversion of sustainable cellulose to the value-added chemicals and high quality biofuel has been recognized as a perfect approach for the alleviation of the dependence on the non-renewable fossil resources. Previously, we successfully de- signed and explored novel and efficient cooperative ionic liquid pairs for this renewable material, which has advantages of high reactor efficiency than current technologies because of the dissolution and in situ catalytic decomposition mechanism. Here, the determinant of this process is further studied by the intensive investigation on the relationship between the cellulose conversion and the properties of ionic liquid catalyst and solvent. Scanning electron microscope (SEM), thermogravimetric analysis (TG) and elemental analysis were used for the comparative characterization of raw cellulose and the residues. The re- suits demonstrate that this consecutive dissolution and in situ catalysis process is much more dependent on the dissolution ca- pability of ionic liquid solvent, while comparatively, the effect of in situ acid catalysis is relatively insignificant.