The thermal decomposition characteristics of methyl oleate were preliminarily investigated under nitrogen atmo-sphere by a thermogravimetric analyzer when the ester was heated at a heating rate of 10℃/min from room t...The thermal decomposition characteristics of methyl oleate were preliminarily investigated under nitrogen atmo-sphere by a thermogravimetric analyzer when the ester was heated at a heating rate of 10℃/min from room temperature to 600℃. Furthermore, the pyrolytic and kinetic characteristics of methyl oleate were intensively studied at different heating rates. The gaseous species obtained during thermal decomposition were also identiifed by the TG-FTIR coupling analysis. The results showed that the pyrolysis of methyl oleate proceeded in three stages, viz. the drying stage, the main pyrolysis stage and the residual pyrolysis stage. The initial decomposition temperature, the maximum weight loss temperature, the peak decomposition temperature and the rate of maximum weight loss of methyl oleate increased with the increasing heating rates. Gaseous CO, CO2 and H2O were the typical decomposition products from pyrolysis of methyl oleate. In addition, a kinetic model for thermal decomposition of methyl oleate was built up based on the experimental results using the Coats-Redfern integral method and the multiplelinear regression method. The activation energy, the preexponential factor, the reaction order and the kinetic equation for thermal decomposition of methyl oleate were obtained. Comparison of the experimental data with the calculated ones and analysis of statistical errors of pyrolysis ratios demonstrated that the kinetic model was reliable for studying the pyrolysis of methyl oleate. Finally, the kinetic compensation effect between the preexponential factors and the activation energy in the pyrolysis of methyl oleate was also conifrmed.展开更多
The marine macroalgae Enteromorpha prolifera was one of the main algal genera that occurred in the widespread green tides in Qingdao, China, during the summers of 2007, 2008 and 2010. It is thus a plentiful source of ...The marine macroalgae Enteromorpha prolifera was one of the main algal genera that occurred in the widespread green tides in Qingdao, China, during the summers of 2007, 2008 and 2010. It is thus a plentiful source of biomass and could be used as a biofuel. In this study, the pyrolytic characteristics and kinetics of E. prolifera were investigated using thermogravimetric analysis (TGA) method. Cornstalk and sawdust were used as comparisons. Pyrolytic characteristics were studied using TG-DTG (thermogravimetry-derivative thermogravimetry) curves. Three stages in the pyrolytic process were determined: dehydration, dramatic weight loss and slow weight loss. E. prolifera was pyrolyzed at a lower initial temperature than the two terrestrial biomass forms. The apparent activation energy values for the three types of biomass were calculated and the mechanism functions were determined using 16 different mechanism functions, frequently used in thermal kinetics analysis. Activation energy values varied with mechanism function and the range of activation energy values for E. prolifera, cornstalk, and sawdust were 25-50 kJ/mol, 60-90 kJ/mol and 120-155 kJ/mol, respectively. This indicates that E. prolifera has low thermal stability for pyrolysis and good combustion characteristics.展开更多
Monodispersed MgO microspheres were successfully synthesized by a simple solvothermal method using PEG-400 as solvent. The samples were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). Th...Monodispersed MgO microspheres were successfully synthesized by a simple solvothermal method using PEG-400 as solvent. The samples were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The results reveal that the precusor was monoclinic Mg5(CO3)4(OH)2·4H2O and composed of nanosheets with the thickness of about 250 nm. By calcining the precusor at 500 °C for 5 min, cubic MgO with similar morphology was obtained. According to the SEM images, it is found that the volume ratio of PEG-400 to deionized water is considered as a crucial factor in the evolution of the morphology. Based on the SEM images obtained under different experimental conditions, a possible growth mechanism which involves self-assembly process was proposed. The thermal decomposition process of MgO precusor was studied by thermogravimetry-differential thermogravimetry(TG-DTG) at different heating rates in air. Thermal analysis kinetics results show that the most probale mechanism models of MgO precusor are An and D3, respectively. In addition, isothermal prediction was studied to quantitatively characterize the thermal decomposition process.展开更多
基金the financial support provided by the National Natural Science Foundation of China(Project No.51375491)the Natural Science Foundation of Chongqing(No.CSTC,2014 JCYAA 50021)
文摘The thermal decomposition characteristics of methyl oleate were preliminarily investigated under nitrogen atmo-sphere by a thermogravimetric analyzer when the ester was heated at a heating rate of 10℃/min from room temperature to 600℃. Furthermore, the pyrolytic and kinetic characteristics of methyl oleate were intensively studied at different heating rates. The gaseous species obtained during thermal decomposition were also identiifed by the TG-FTIR coupling analysis. The results showed that the pyrolysis of methyl oleate proceeded in three stages, viz. the drying stage, the main pyrolysis stage and the residual pyrolysis stage. The initial decomposition temperature, the maximum weight loss temperature, the peak decomposition temperature and the rate of maximum weight loss of methyl oleate increased with the increasing heating rates. Gaseous CO, CO2 and H2O were the typical decomposition products from pyrolysis of methyl oleate. In addition, a kinetic model for thermal decomposition of methyl oleate was built up based on the experimental results using the Coats-Redfern integral method and the multiplelinear regression method. The activation energy, the preexponential factor, the reaction order and the kinetic equation for thermal decomposition of methyl oleate were obtained. Comparison of the experimental data with the calculated ones and analysis of statistical errors of pyrolysis ratios demonstrated that the kinetic model was reliable for studying the pyrolysis of methyl oleate. Finally, the kinetic compensation effect between the preexponential factors and the activation energy in the pyrolysis of methyl oleate was also conifrmed.
基金Supported by the National Natural Science Foundation of China (No. 21076117)Shandong Province Higher Educational Science and Technology Program (Nos. J09LC22 and J10LC15)+1 种基金the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX2-YW-209)the Open Fund of the Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences (No. Kf201016)
文摘The marine macroalgae Enteromorpha prolifera was one of the main algal genera that occurred in the widespread green tides in Qingdao, China, during the summers of 2007, 2008 and 2010. It is thus a plentiful source of biomass and could be used as a biofuel. In this study, the pyrolytic characteristics and kinetics of E. prolifera were investigated using thermogravimetric analysis (TGA) method. Cornstalk and sawdust were used as comparisons. Pyrolytic characteristics were studied using TG-DTG (thermogravimetry-derivative thermogravimetry) curves. Three stages in the pyrolytic process were determined: dehydration, dramatic weight loss and slow weight loss. E. prolifera was pyrolyzed at a lower initial temperature than the two terrestrial biomass forms. The apparent activation energy values for the three types of biomass were calculated and the mechanism functions were determined using 16 different mechanism functions, frequently used in thermal kinetics analysis. Activation energy values varied with mechanism function and the range of activation energy values for E. prolifera, cornstalk, and sawdust were 25-50 kJ/mol, 60-90 kJ/mol and 120-155 kJ/mol, respectively. This indicates that E. prolifera has low thermal stability for pyrolysis and good combustion characteristics.
基金Project(CL11034)supported by the Training Program of Innovation and Entrepreneurship for Undergraduates of ChinaProject(CSUZC2013033)supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,ChinaProject(201210533003)supported by National Training Programs of Innovation and Entrepreneurship for Undergraduates,China
文摘Monodispersed MgO microspheres were successfully synthesized by a simple solvothermal method using PEG-400 as solvent. The samples were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The results reveal that the precusor was monoclinic Mg5(CO3)4(OH)2·4H2O and composed of nanosheets with the thickness of about 250 nm. By calcining the precusor at 500 °C for 5 min, cubic MgO with similar morphology was obtained. According to the SEM images, it is found that the volume ratio of PEG-400 to deionized water is considered as a crucial factor in the evolution of the morphology. Based on the SEM images obtained under different experimental conditions, a possible growth mechanism which involves self-assembly process was proposed. The thermal decomposition process of MgO precusor was studied by thermogravimetry-differential thermogravimetry(TG-DTG) at different heating rates in air. Thermal analysis kinetics results show that the most probale mechanism models of MgO precusor are An and D3, respectively. In addition, isothermal prediction was studied to quantitatively characterize the thermal decomposition process.