The non-isothermal kinetics of CdO nanoparticles prepared from CdCO3 precursor using thermal decomposition method was investigated. A model-fitting Malek approach and a model-free advanced isoconversional method of Vy...The non-isothermal kinetics of CdO nanoparticles prepared from CdCO3 precursor using thermal decomposition method was investigated. A model-fitting Malek approach and a model-free advanced isoconversional method of Vyazovkin were applied to the analysis of the DSC and TGA data. The results showed that CdO nanoparticles prepared from CdCO3 followed an autocatalytic reaction. Sestak–Berggren model could favorably describe the studied reaction process. Moreover, the apparent activation energy of CdCO3 decomposition was calculated to be (119.19±9.97) kJ/mol and the explicit rate equation form of CdCO3 decomposition was established.展开更多
A microporous platinum/fullerenes (Pt/C 60) counter electrode was prepared by using a facile rapid thermal decomposition method,and the quantum-dot sensitized solar cell (QDSSC) of Pt/C 60-TiO 2-CdS-ZnS and Pt/C 60-Ti...A microporous platinum/fullerenes (Pt/C 60) counter electrode was prepared by using a facile rapid thermal decomposition method,and the quantum-dot sensitized solar cell (QDSSC) of Pt/C 60-TiO 2-CdS-ZnS and Pt/C 60-TiO 2-CdTe-ZnS was fabrication.The technique forms a good contact between QDs and TiO 2 films.The photovoltaic performances of the as-prepared cells were investigated.The QDSSCs with Pt/C 60 counter electrode show high power conversion efficiency of 1.90% and 2.06%,respectively (under irradiation of a simulated solar light with an intensity of 100 mW cm 2),which is comparable to the one fabricated using conventional Pt electrode.展开更多
文摘The non-isothermal kinetics of CdO nanoparticles prepared from CdCO3 precursor using thermal decomposition method was investigated. A model-fitting Malek approach and a model-free advanced isoconversional method of Vyazovkin were applied to the analysis of the DSC and TGA data. The results showed that CdO nanoparticles prepared from CdCO3 followed an autocatalytic reaction. Sestak–Berggren model could favorably describe the studied reaction process. Moreover, the apparent activation energy of CdCO3 decomposition was calculated to be (119.19±9.97) kJ/mol and the explicit rate equation form of CdCO3 decomposition was established.
基金supported by the National High Technology Research and Development Program of China (2009AA03Z217)the National Natural Science Foundation of China (90922028 and 51002053)
文摘A microporous platinum/fullerenes (Pt/C 60) counter electrode was prepared by using a facile rapid thermal decomposition method,and the quantum-dot sensitized solar cell (QDSSC) of Pt/C 60-TiO 2-CdS-ZnS and Pt/C 60-TiO 2-CdTe-ZnS was fabrication.The technique forms a good contact between QDs and TiO 2 films.The photovoltaic performances of the as-prepared cells were investigated.The QDSSCs with Pt/C 60 counter electrode show high power conversion efficiency of 1.90% and 2.06%,respectively (under irradiation of a simulated solar light with an intensity of 100 mW cm 2),which is comparable to the one fabricated using conventional Pt electrode.