期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
面向铁路旅客服务应用的语音识别模型研究 被引量:1
1
作者 王心雨 景辉 《铁路计算机应用》 2022年第4期7-15,共9页
为扩大面向铁路旅客服务的语音识别应用,文章研究适用于铁路旅客服务应用的语音识别模型,使用基于卷积增强的Conformer编码结构和RNN-T模型结构,构建基于Conformer-Transducer的语音识别模型。由于卷积网络容易忽视输入信号整体与局部... 为扩大面向铁路旅客服务的语音识别应用,文章研究适用于铁路旅客服务应用的语音识别模型,使用基于卷积增强的Conformer编码结构和RNN-T模型结构,构建基于Conformer-Transducer的语音识别模型。由于卷积网络容易忽视输入信号整体与局部间关联,在Conformer结构中的卷积模块加入注意力机制,用以修正卷积模块的计算结果。构建铁路旅客服务语音数据集,对改进的语音识别模型进行测评;结果表明:改进后的语音识别模型准确率达到92.09%,相较于一般的Conformer-Transducer模型,语音识别字错误率降低0.33%。鉴于铁路旅客服务涉及铁路出行条例、旅客常问问题等众多文本信息,在语音识别模型中融入语言模型与热词赋权2种文本处理机制,使其在铁路专有名词的识别上优于通用的语音识别算法;文章研究提出的语音识别模型已应用于旅客常问问题查询设备和车站智能服务机器人,有助于提高铁路旅客服务水平,改善铁路旅客出行体验,促进铁路旅客服务工作实现减员增效。 展开更多
关键词 铁路旅客服务 语音识别模型 机器学习 神经网络 语言模型 热词赋权
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部