The study firstly discusses the pyrolysis characteristics and kinetics by thermogravimetric analysis (TGA), and then investigates the pyrolysis of lignite and co-pyrolysis with plastic (polyethylene or polypropyl- ...The study firstly discusses the pyrolysis characteristics and kinetics by thermogravimetric analysis (TGA), and then investigates the pyrolysis of lignite and co-pyrolysis with plastic (polyethylene or polypropyl- ene) in tube furnace. Meanwhile, the research focuses on the co-pyrolysis products under different mix- ing ratios as well as pyrolysis products at different testing temperatures and heating rates. The results show that higher final testing temperature and lower heating rate contribute to bond fission in lignite pyrolysis, resulting in less char product. In co-pyrolysis, lignite acts as hydrogen donor, and the yields of char and water rise with increasing amount of plastic in the mixture, while the yields of gas and tar decrease; and a little admixture of plastic will promote the production of gas and tar. Kinetic studies indi- cate that in temperature range of 530-600℃, activation energies of lignite are higher than those of lig- nite/plastic blends, and as plastic mass ratio increases from 0% to 10%, samples need less energy to be decomposed during co-pyrolysis.展开更多
This paper reviews sulfur-induced passivity degradation of nuclear materials with emphasis on steam generator(SG)alloys. The state of arts on this topic concerning thermodynamic calculation and experimental data has b...This paper reviews sulfur-induced passivity degradation of nuclear materials with emphasis on steam generator(SG)alloys. The state of arts on this topic concerning thermodynamic calculation and experimental data has been reviewed. Thermodynamic calculation results indicate that the distribution of sulfur species strongly depends on p H and temperature. Experimental data show that solution p H, temperature and solution chemistries can significantly affect the electrochemical behaviors of SG materials and the underlying degradation mechanisms. Some issues when conducting corrosion tests at high temperature should be paid attention to, such as the dissolution of the autoclave, which may affect the facticity of the experimental results.展开更多
Directly measuring the oxidative heat release intensity at low temperatures is difficult at present.We developed a new method based on heat conduction theory that directly measures heat release intensity of loose coal...Directly measuring the oxidative heat release intensity at low temperatures is difficult at present.We developed a new method based on heat conduction theory that directly measures heat release intensity of loose coal at low temperatures.Using this method, we calculated the oxidative heat release intensity of differently sized loose coals by comparing the temperature rise of the coal in nitrogen or an air environment.The results show that oxidation heat release intensity of Shenhua coal sized 0~15 mm is 0.001~0.03 W/m3 at 30~90 °C and increases with increasing temperature.The heat release intensity at a given temperature is larger for smaller sized coal.The temperature effect on heat release intensity is muted as the coal size increases.At lower temperature the change in heat release intensity as a function of size becomes smaller.These results show that the test system is usable for practical applications and is easy to operate and is capable of measuring mass samples.展开更多
The heat transfer of methane at supercritical pressure in a helically coiled tube was numerically investigated using the Reynolds Stress Model under constant wall temperature. The effects of mass flux (G), inlet pre...The heat transfer of methane at supercritical pressure in a helically coiled tube was numerically investigated using the Reynolds Stress Model under constant wall temperature. The effects of mass flux (G), inlet pressure (Pin) and buoyancy force on the heat transfer behaviors were discussed in detail. Results show that the light fluid with higher temperature appears near the inner wall of the helically coiled tube. When the bulk temperature is less than or approach to the pscudocritical temperature (Tpc), the combined effects of buoyancy force and centrifugal force make heavy fluid with lower temperature appear near the outer-right of the helically coiled tube. Beyond the Tpc, the heavy fluid with lower temperature moves from the outer-right region to the outer region owing to the centrifugal force. The buoyancy force caused by density variation, which can be characterized by Gr/Re3 and Gr/Re2.7, enhances the heat transfer coefficient (h) when the bulk temperature is less than or near the T~, and the h expe- riences oscillation due to the buoyancy force. The oscillation is reduced progressively with the increase of G. Moreover, h reaches its peak value near the Tpv. Higher G could improve the heat transfer performance in the whole temperature range. The peak value ofh depends on Pin. A new correlation was proposed for methane at su- percritical pressure convective heat transfer in the helical tube, which shows a good agreement with the present simulated results.展开更多
基金the financial support from the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Special Found of International S&T Cooperation Project of China (No.2010DFA72730)
文摘The study firstly discusses the pyrolysis characteristics and kinetics by thermogravimetric analysis (TGA), and then investigates the pyrolysis of lignite and co-pyrolysis with plastic (polyethylene or polypropyl- ene) in tube furnace. Meanwhile, the research focuses on the co-pyrolysis products under different mix- ing ratios as well as pyrolysis products at different testing temperatures and heating rates. The results show that higher final testing temperature and lower heating rate contribute to bond fission in lignite pyrolysis, resulting in less char product. In co-pyrolysis, lignite acts as hydrogen donor, and the yields of char and water rise with increasing amount of plastic in the mixture, while the yields of gas and tar decrease; and a little admixture of plastic will promote the production of gas and tar. Kinetic studies indi- cate that in temperature range of 530-600℃, activation energies of lignite are higher than those of lig- nite/plastic blends, and as plastic mass ratio increases from 0% to 10%, samples need less energy to be decomposed during co-pyrolysis.
基金Supported by the National Basic Research Program of China("973"Program,No.2014CB046805)National Natural Science Foundation of China(No.51131007,No.51371124)+1 种基金Natural Science Foundation of Tianjin(No.14JCYBJC17700)the Open-Ended Fund of the Key Laboratory of Nuclear Materials and Safety Assessment(Institute of Metal Research,Chinese Academy of Sciences,China)(No.2016NMSAKF02)
文摘This paper reviews sulfur-induced passivity degradation of nuclear materials with emphasis on steam generator(SG)alloys. The state of arts on this topic concerning thermodynamic calculation and experimental data has been reviewed. Thermodynamic calculation results indicate that the distribution of sulfur species strongly depends on p H and temperature. Experimental data show that solution p H, temperature and solution chemistries can significantly affect the electrochemical behaviors of SG materials and the underlying degradation mechanisms. Some issues when conducting corrosion tests at high temperature should be paid attention to, such as the dissolution of the autoclave, which may affect the facticity of the experimental results.
基金Projects 50474067 supported by the National Natural Science Foundation of China2007KF11 by the State Key Laboratory of Coal Resources and Safety Mining
文摘Directly measuring the oxidative heat release intensity at low temperatures is difficult at present.We developed a new method based on heat conduction theory that directly measures heat release intensity of loose coal at low temperatures.Using this method, we calculated the oxidative heat release intensity of differently sized loose coals by comparing the temperature rise of the coal in nitrogen or an air environment.The results show that oxidation heat release intensity of Shenhua coal sized 0~15 mm is 0.001~0.03 W/m3 at 30~90 °C and increases with increasing temperature.The heat release intensity at a given temperature is larger for smaller sized coal.The temperature effect on heat release intensity is muted as the coal size increases.At lower temperature the change in heat release intensity as a function of size becomes smaller.These results show that the test system is usable for practical applications and is easy to operate and is capable of measuring mass samples.
基金National Natural Science Foundation of China(50976080)Hubei Young Talent Project(Q20161502)financially supported this work
文摘The heat transfer of methane at supercritical pressure in a helically coiled tube was numerically investigated using the Reynolds Stress Model under constant wall temperature. The effects of mass flux (G), inlet pressure (Pin) and buoyancy force on the heat transfer behaviors were discussed in detail. Results show that the light fluid with higher temperature appears near the inner wall of the helically coiled tube. When the bulk temperature is less than or approach to the pscudocritical temperature (Tpc), the combined effects of buoyancy force and centrifugal force make heavy fluid with lower temperature appear near the outer-right of the helically coiled tube. Beyond the Tpc, the heavy fluid with lower temperature moves from the outer-right region to the outer region owing to the centrifugal force. The buoyancy force caused by density variation, which can be characterized by Gr/Re3 and Gr/Re2.7, enhances the heat transfer coefficient (h) when the bulk temperature is less than or near the T~, and the h expe- riences oscillation due to the buoyancy force. The oscillation is reduced progressively with the increase of G. Moreover, h reaches its peak value near the Tpv. Higher G could improve the heat transfer performance in the whole temperature range. The peak value ofh depends on Pin. A new correlation was proposed for methane at su- percritical pressure convective heat transfer in the helical tube, which shows a good agreement with the present simulated results.