The pyrolysis characteristics of PVC were systematically investigated using a Netzschne TG thermo-balance coupled to a quadrupole mass spectrometer. The pyrolysis conditions were 0.1 MPa of Ar, a heating rate of 10 ℃...The pyrolysis characteristics of PVC were systematically investigated using a Netzschne TG thermo-balance coupled to a quadrupole mass spectrometer. The pyrolysis conditions were 0.1 MPa of Ar, a heating rate of 10 ℃/min and a final temperature of 1000℃. Both the thermogravimetric properties and the simultaneous evolution of gaseous products during pyrolysis were studied. The TG/DTG results showed that as the pyrolysis temperature increases the weight loss and weight loss rate of PVC increases. Near 412℃ the weight loss rate attained its peak value. At higher temperatures the rate of loss gradually decreases. The gases evolved during thermogravimetric analysis were analyzed by a mass spectrometer, monitoring the relative intensity of HC1, C6H6, light hydrocarbon and chlorine-containing gases The evolution curves showed that HC1, C6H6, light hydrocarbon and chlorine-containing gases all peak at about 416℃. This is consistent with the fact that the weight loss curves also peak at about 412℃. The extensive HCl evolution is consistent with the high chlorine content of PVC. The formation of these gases can be explained by considering these reactions: dehydrochlorination, intramolecular cyclization and the addition of HCl to unsaturated hydrocarbons.展开更多
The effect of pyrolysis on the microstructure and moisture adsorption of lignite was investigated with low field nuclear magnetic resonance spectroscopy. Changes in oxygen-containing groups were analyzed by Fourier tr...The effect of pyrolysis on the microstructure and moisture adsorption of lignite was investigated with low field nuclear magnetic resonance spectroscopy. Changes in oxygen-containing groups were analyzed by Fourier transform infrared spectroscopy (FTIR), and H20 adsorption mechanism on the surface of lignite pyrolysis was inferred. Two major changes in the pore structure of lignite char were observed as temperature increased in 105-200 ℃ and 500-700 ℃. Pyrolysis temperature is a significant factor in removing carboxyl and phenolic hydroxyl from lignite. Variation of ether bond content can be divided into three stages; the content initially increased, then decreased, and finally increased. The equilibrium adsorption ratio, content of oxygen-containing groups, and variation of pore volume below 700° were closely correlated with each other. The amount of adsorbed water on char pyrolyzed at 700 ℃ increased. Moreover, the adsorption capacity of the lignite decreased, and the adsorption state changed.展开更多
基金Project 2005BS09003 supported by Shandong Province Foundation for Distinguished Young Scholars
文摘The pyrolysis characteristics of PVC were systematically investigated using a Netzschne TG thermo-balance coupled to a quadrupole mass spectrometer. The pyrolysis conditions were 0.1 MPa of Ar, a heating rate of 10 ℃/min and a final temperature of 1000℃. Both the thermogravimetric properties and the simultaneous evolution of gaseous products during pyrolysis were studied. The TG/DTG results showed that as the pyrolysis temperature increases the weight loss and weight loss rate of PVC increases. Near 412℃ the weight loss rate attained its peak value. At higher temperatures the rate of loss gradually decreases. The gases evolved during thermogravimetric analysis were analyzed by a mass spectrometer, monitoring the relative intensity of HC1, C6H6, light hydrocarbon and chlorine-containing gases The evolution curves showed that HC1, C6H6, light hydrocarbon and chlorine-containing gases all peak at about 416℃. This is consistent with the fact that the weight loss curves also peak at about 412℃. The extensive HCl evolution is consistent with the high chlorine content of PVC. The formation of these gases can be explained by considering these reactions: dehydrochlorination, intramolecular cyclization and the addition of HCl to unsaturated hydrocarbons.
基金Supported by the National Science Foundation of China(Nos.21566029,21566028and 21266017)
文摘The effect of pyrolysis on the microstructure and moisture adsorption of lignite was investigated with low field nuclear magnetic resonance spectroscopy. Changes in oxygen-containing groups were analyzed by Fourier transform infrared spectroscopy (FTIR), and H20 adsorption mechanism on the surface of lignite pyrolysis was inferred. Two major changes in the pore structure of lignite char were observed as temperature increased in 105-200 ℃ and 500-700 ℃. Pyrolysis temperature is a significant factor in removing carboxyl and phenolic hydroxyl from lignite. Variation of ether bond content can be divided into three stages; the content initially increased, then decreased, and finally increased. The equilibrium adsorption ratio, content of oxygen-containing groups, and variation of pore volume below 700° were closely correlated with each other. The amount of adsorbed water on char pyrolyzed at 700 ℃ increased. Moreover, the adsorption capacity of the lignite decreased, and the adsorption state changed.