A solution cooling absorption(SCA)approach is proposed to modify the aqueous ammonia absorption refrigerat-ion cycle using the strong solution from the absorber to cool the forepart of the absorption in the cycle fo...A solution cooling absorption(SCA)approach is proposed to modify the aqueous ammonia absorption refrigerat-ion cycle using the strong solution from the absorber to cool the forepart of the absorption in the cycle for reclaiming some portion of absorption heat.As a consequence of raised temperature at the inlet,the strong solution partially boils at the outlet of the solution heat exchanger,and diminishes the thermal heat consumption of the heat source.The calculation results show that the coefficient of performance(COP)of this modified cycle is about 28.3% higher than that of the traditional cycle under typical conditions;while the required heat transfer area of the total heat exchangers of the cycle is somewhat less than that of the traditional one.The capacity of refrigeration with the new absorption cycle is more than doubled in contrast to the adsorption scheme with an identical configuration.It is sufficient to supply a fishing boat the chilling capacity for preservation of fishing products with the modified cycle chiller driven by its diesel engine exhaust.展开更多
In order to realize mass transfer analysis for microwave hot in-place recycling of asphalt pavements, a volume element is established including asphalt mixtures, liquid water and vapor. A mass transfer control model i...In order to realize mass transfer analysis for microwave hot in-place recycling of asphalt pavements, a volume element is established including asphalt mixtures, liquid water and vapor. A mass transfer control model is built by the theory of multiphysics, phase transformation and diffusion. The model contains continuity equation, energy conservation equation, movement equation and vapor diffusion equation. To gain the solution of the mass transfer model, the formulas are simplified to one-dimensional differential equations. And then a mathematical model of boundary conditions is established. The mass transfer velocity and dissipative energy are obtained in different moisture contents through simulation of asphalt pavements recycling. The result indicates that when initial moisture content is certain, mass transfer velocity is almost uniform in depth direction at the same heating time and enertrv absorbed by water i,~ descendino with denletion of moisture.展开更多
基金The National Natural Science Foundation of China(No.50776016)the National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2008BAJ12B02)
文摘A solution cooling absorption(SCA)approach is proposed to modify the aqueous ammonia absorption refrigerat-ion cycle using the strong solution from the absorber to cool the forepart of the absorption in the cycle for reclaiming some portion of absorption heat.As a consequence of raised temperature at the inlet,the strong solution partially boils at the outlet of the solution heat exchanger,and diminishes the thermal heat consumption of the heat source.The calculation results show that the coefficient of performance(COP)of this modified cycle is about 28.3% higher than that of the traditional cycle under typical conditions;while the required heat transfer area of the total heat exchangers of the cycle is somewhat less than that of the traditional one.The capacity of refrigeration with the new absorption cycle is more than doubled in contrast to the adsorption scheme with an identical configuration.It is sufficient to supply a fishing boat the chilling capacity for preservation of fishing products with the modified cycle chiller driven by its diesel engine exhaust.
基金Supported by the National Natural Science Foundation of China (51106001) Anhui College Provincial Natural Science Research Project (No. KJ2011B018)
文摘In order to realize mass transfer analysis for microwave hot in-place recycling of asphalt pavements, a volume element is established including asphalt mixtures, liquid water and vapor. A mass transfer control model is built by the theory of multiphysics, phase transformation and diffusion. The model contains continuity equation, energy conservation equation, movement equation and vapor diffusion equation. To gain the solution of the mass transfer model, the formulas are simplified to one-dimensional differential equations. And then a mathematical model of boundary conditions is established. The mass transfer velocity and dissipative energy are obtained in different moisture contents through simulation of asphalt pavements recycling. The result indicates that when initial moisture content is certain, mass transfer velocity is almost uniform in depth direction at the same heating time and enertrv absorbed by water i,~ descendino with denletion of moisture.