This paper deals about testing thermal properties of the cooling device with heat pipes at inclination position, in consequence of using the natural convection to improve heat transfer properties. Head point testing o...This paper deals about testing thermal properties of the cooling device with heat pipes at inclination position, in consequence of using the natural convection to improve heat transfer properties. Head point testing of cooling device is monitoring temperature on the aluminium block of energy converter, heat pipes and ribs under temperature condition 30 ℃ in thermostatic chamber. Testing of the device was performed at tilt angles positions 0, 10 and 20° from the vertical level. The heat flux loaded to energy converter was 450 W. The next goal of the paper is to research on influence working position of the wick heat pipe on their thermal performance. In this research heat pipes were made with capillary structure sintered from copper powder granularity 100, 63 and 50 μm filled with water and ethanol. Next heat pipe thermal performance was performed by measuring heat source and working positions. Knowledge of these two research goals can bring potential improvements in purpose of cooling device for effective heat sink from high power electronic components.展开更多
An approach was presented to intensify the mixing process. Firstly, a novel concept, the dissipation of mass transfer ability(DMA) associated with convective mass transfer, was defined via an analogy to the heat-work ...An approach was presented to intensify the mixing process. Firstly, a novel concept, the dissipation of mass transfer ability(DMA) associated with convective mass transfer, was defined via an analogy to the heat-work conversion. Accordingly, the focus on mass transfer enhancement can be shifted to seek the extremum of the DMA of the system. To this end, an optimization principle was proposed. A mathematical model was then developed to formulate the optimization into a variational problem. Subsequently, the intensification of the mixing process for a gas mixture in a micro-tube was provided to demonstrate the proposed principle. In the demonstration example, an optimized velocity field was obtained in which the mixing ability was improved, i.e., the mixing process should be intensified by adjusting the velocity field in related equipment. Therefore, a specific procedure was provided to produce a mixer with geometric irregularities associated with an ideal velocity.展开更多
A numerical study based on direct thermal to electric energy conversion was performed in a reciprocal flow porous media burner embedded with two layers of thermoelements. The burner lean combustibility limit was sough...A numerical study based on direct thermal to electric energy conversion was performed in a reciprocal flow porous media burner embedded with two layers of thermoelements. The burner lean combustibility limit was sought in order to maximize global efficiency of thermal to electrical energy conversion by minimizing fuel consumption. Once the pairs of operational variables, composition and filtrational velocity of gas inlet mixture were found, the optimal length and placement of thermoelectric elements within the reactor high thermal gradients were sought to maximize the electric current, thermoelements and system overall efficiency. A two temperature-resistance model for finite time thermodynamics was developed for the thermoelectric elements energy fluxes. Results indicate a distribution of current and efficiencies that presents a maximum at different themoelements length. Maximum values for current and system efficiency obtained were 44.3 m A and 2.5%, respectively.展开更多
This work discusses the combination of two thermodynamic cycles seeking to improve the overall chemical energy conversion rate into mechanical energy. Here one engine operates according a Rankine cycle in order to use...This work discusses the combination of two thermodynamic cycles seeking to improve the overall chemical energy conversion rate into mechanical energy. Here one engine operates according a Rankine cycle in order to use part of the thermal energy released to the boundary, i.e., the neighboring atmosphere. The analysis of this combined cycle shows that it might, under proper condition, represent a gain of 1.2% in the overall delivered engine power.展开更多
文摘This paper deals about testing thermal properties of the cooling device with heat pipes at inclination position, in consequence of using the natural convection to improve heat transfer properties. Head point testing of cooling device is monitoring temperature on the aluminium block of energy converter, heat pipes and ribs under temperature condition 30 ℃ in thermostatic chamber. Testing of the device was performed at tilt angles positions 0, 10 and 20° from the vertical level. The heat flux loaded to energy converter was 450 W. The next goal of the paper is to research on influence working position of the wick heat pipe on their thermal performance. In this research heat pipes were made with capillary structure sintered from copper powder granularity 100, 63 and 50 μm filled with water and ethanol. Next heat pipe thermal performance was performed by measuring heat source and working positions. Knowledge of these two research goals can bring potential improvements in purpose of cooling device for effective heat sink from high power electronic components.
基金Supported by the National Basic Research Program of China("973" Program,No.2012CB720500)the National Natural Science Foundation of China(No.21176171)
文摘An approach was presented to intensify the mixing process. Firstly, a novel concept, the dissipation of mass transfer ability(DMA) associated with convective mass transfer, was defined via an analogy to the heat-work conversion. Accordingly, the focus on mass transfer enhancement can be shifted to seek the extremum of the DMA of the system. To this end, an optimization principle was proposed. A mathematical model was then developed to formulate the optimization into a variational problem. Subsequently, the intensification of the mixing process for a gas mixture in a micro-tube was provided to demonstrate the proposed principle. In the demonstration example, an optimized velocity field was obtained in which the mixing ability was improved, i.e., the mixing process should be intensified by adjusting the velocity field in related equipment. Therefore, a specific procedure was provided to produce a mixer with geometric irregularities associated with an ideal velocity.
文摘A numerical study based on direct thermal to electric energy conversion was performed in a reciprocal flow porous media burner embedded with two layers of thermoelements. The burner lean combustibility limit was sought in order to maximize global efficiency of thermal to electrical energy conversion by minimizing fuel consumption. Once the pairs of operational variables, composition and filtrational velocity of gas inlet mixture were found, the optimal length and placement of thermoelectric elements within the reactor high thermal gradients were sought to maximize the electric current, thermoelements and system overall efficiency. A two temperature-resistance model for finite time thermodynamics was developed for the thermoelectric elements energy fluxes. Results indicate a distribution of current and efficiencies that presents a maximum at different themoelements length. Maximum values for current and system efficiency obtained were 44.3 m A and 2.5%, respectively.
文摘This work discusses the combination of two thermodynamic cycles seeking to improve the overall chemical energy conversion rate into mechanical energy. Here one engine operates according a Rankine cycle in order to use part of the thermal energy released to the boundary, i.e., the neighboring atmosphere. The analysis of this combined cycle shows that it might, under proper condition, represent a gain of 1.2% in the overall delivered engine power.