The temperature of a solar cell subjected to the incident global solar radiation as a function of the local day time is determined. A heat balance equation is solved considering the heat losses due to convection and t...The temperature of a solar cell subjected to the incident global solar radiation as a function of the local day time is determined. A heat balance equation is solved considering the heat losses due to convection and thermal radiation. The cell efficiency is estimated as a measure of its performance. The results reveal that the temperature within the cell attains significant values. Nevertheless, the temperature dependence of its efficiency along the day time is not pronouncing. It slightly decreases with temperature.展开更多
文摘The temperature of a solar cell subjected to the incident global solar radiation as a function of the local day time is determined. A heat balance equation is solved considering the heat losses due to convection and thermal radiation. The cell efficiency is estimated as a measure of its performance. The results reveal that the temperature within the cell attains significant values. Nevertheless, the temperature dependence of its efficiency along the day time is not pronouncing. It slightly decreases with temperature.