The warm-hot deformation behavior of CF53 steel was studied with hot compression tests at temperature of 1 123-1 273 K and strain rate of 0. 1-20 s^-l. The activation energy for warm-hot deformation is 274. 816 kJ/mol...The warm-hot deformation behavior of CF53 steel was studied with hot compression tests at temperature of 1 123-1 273 K and strain rate of 0. 1-20 s^-l. The activation energy for warm-hot deformation is 274. 816 kJ/mol. The influences of Zener-Hollomon parameter, strain and grain size imposing on the flow stress were ana- lyzed in the temperature range of warm-hot forging. Based on the creep theory and mathematic theory of statistics, mathematical models of flow stress were obtained. The results provide a scientific basis for controlling microstruc- ture of forging process through Zener-Hollomon parameter.展开更多
This article presents a mathematical model of heat and mass transfer for the process of fluidized-bed spray granulation, which can be applied in the analysis of bed temperature profile, temperature and humidity of out...This article presents a mathematical model of heat and mass transfer for the process of fluidized-bed spray granulation, which can be applied in the analysis of bed temperature profile, temperature and humidity of outlet gas and moisture content of particles. Effects of operation parameters on the batch granulation are investigated. The theoretical calculation agrees reasonably well with the experimental data.展开更多
Two different Ti alloys were cast in a graphite mould using vacuum induction skull melting furnace. The first alloy was Ti-6Al-4V and the second was Ti-6Al-4V 0.5Si. Silicon as a grain refiner was added into Ti-6Al-4V...Two different Ti alloys were cast in a graphite mould using vacuum induction skull melting furnace. The first alloy was Ti-6Al-4V and the second was Ti-6Al-4V 0.5Si. Silicon as a grain refiner was added into Ti-6Al-4V alloy, and the effects of Si-addition on the microstructure and properties of the as-cast and swaged alloys were investigated. Hot swaging at 900 °C was performed on the cast samples and then two different thermal treatments were applied. The first treatment was done by heating the swaged samples at 1050 °C to produce fine lamella structure, while the second treatment was carried out at 1050 °C and then decreased the temperature to 800 °C for getting coarse lamella structure. An addition of 0.5% Si to Ti-6Al-4V alloy decreased the grain size of the as-cast sample from 627 to 337 μm. There was an increase in ultimate tensile strength of about 25 MPa for the as-cast Ti-6Al-4V 0.5Si alloy compared to Ti-6Al-4V due to the refinement effect caused by Si addition. A maximum ultimate tensile strength of 1380 MPa and a minimum corrosion rate (1.35×10 6 mm/a in Hank’s solution and 5.78×10 4 mm/a in NaCl solution) were reported for the heat treated fine lamella structure of Ti-6Al-4V 0.5Si alloy. The wear rate was decreased to about 50% by adding 0.5% Si at low sliding speeds and to about 73% at high sliding speeds.展开更多
基金The Automobile Industry Science and Tech-nology Development Fund (No3040)
文摘The warm-hot deformation behavior of CF53 steel was studied with hot compression tests at temperature of 1 123-1 273 K and strain rate of 0. 1-20 s^-l. The activation energy for warm-hot deformation is 274. 816 kJ/mol. The influences of Zener-Hollomon parameter, strain and grain size imposing on the flow stress were ana- lyzed in the temperature range of warm-hot forging. Based on the creep theory and mathematic theory of statistics, mathematical models of flow stress were obtained. The results provide a scientific basis for controlling microstruc- ture of forging process through Zener-Hollomon parameter.
文摘This article presents a mathematical model of heat and mass transfer for the process of fluidized-bed spray granulation, which can be applied in the analysis of bed temperature profile, temperature and humidity of outlet gas and moisture content of particles. Effects of operation parameters on the batch granulation are investigated. The theoretical calculation agrees reasonably well with the experimental data.
文摘Two different Ti alloys were cast in a graphite mould using vacuum induction skull melting furnace. The first alloy was Ti-6Al-4V and the second was Ti-6Al-4V 0.5Si. Silicon as a grain refiner was added into Ti-6Al-4V alloy, and the effects of Si-addition on the microstructure and properties of the as-cast and swaged alloys were investigated. Hot swaging at 900 °C was performed on the cast samples and then two different thermal treatments were applied. The first treatment was done by heating the swaged samples at 1050 °C to produce fine lamella structure, while the second treatment was carried out at 1050 °C and then decreased the temperature to 800 °C for getting coarse lamella structure. An addition of 0.5% Si to Ti-6Al-4V alloy decreased the grain size of the as-cast sample from 627 to 337 μm. There was an increase in ultimate tensile strength of about 25 MPa for the as-cast Ti-6Al-4V 0.5Si alloy compared to Ti-6Al-4V due to the refinement effect caused by Si addition. A maximum ultimate tensile strength of 1380 MPa and a minimum corrosion rate (1.35×10 6 mm/a in Hank’s solution and 5.78×10 4 mm/a in NaCl solution) were reported for the heat treated fine lamella structure of Ti-6Al-4V 0.5Si alloy. The wear rate was decreased to about 50% by adding 0.5% Si at low sliding speeds and to about 73% at high sliding speeds.