A different pressure thermally coupled reactive distillation column(DPT-RD) for the hydrolysis of methyl acetate(Me Ac) is developed, and its design and optimization procedures are investigated. The sensitivity analys...A different pressure thermally coupled reactive distillation column(DPT-RD) for the hydrolysis of methyl acetate(Me Ac) is developed, and its design and optimization procedures are investigated. The sensitivity analysis is carried out to minimize the energy consumption, which is associated with the total annual cost(TAC). The influence of the proposed DPTRD scheme on energy consumption and economic efficiency are evaluated in comparison with the conventional reactive distillation column(CRD). Both the DPT-RD and CRD are simulated with the Aspen Plus?, and it can be observed that for the DPT-RD the energy consumption and the TAC are reduced, and the thermodynamic efficiency is increased as compared with the CRD process.展开更多
The efficiency,robustness and reliability of recent numerical methods for finding solutions to flow problems have given rise to the implementation of computational fluid dynamics(CFD) as a broadly used analysis method...The efficiency,robustness and reliability of recent numerical methods for finding solutions to flow problems have given rise to the implementation of computational fluid dynamics(CFD) as a broadly used analysis method for engineering problems like membrane separation system.The CFD modeling in this study observes steady and unsteady(transient) heat flux and temperature profiles in a polymeric(cellulose acetate) membrane.This study is novel due to the implementation of user defined scalar(UDS) diffusion equation by using user-defined functions(UDFs) infinite volume method(FVM).Some details of the FVM used by the solver are carefully discussed when implementing terms in the governing equation and boundary conditions(BC).The contours of temperature due to high-temperature gradient are reported for steady and unsteady problems.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.21276279,21476261)the Key Technologies Development Project of Qingdao Economic and Technological Development Zone(Grant No.2013-1-57)+1 种基金the Fundamental Research Funds for the Central Universities(No.14CX05030ANo.14CX06108A).
文摘A different pressure thermally coupled reactive distillation column(DPT-RD) for the hydrolysis of methyl acetate(Me Ac) is developed, and its design and optimization procedures are investigated. The sensitivity analysis is carried out to minimize the energy consumption, which is associated with the total annual cost(TAC). The influence of the proposed DPTRD scheme on energy consumption and economic efficiency are evaluated in comparison with the conventional reactive distillation column(CRD). Both the DPT-RD and CRD are simulated with the Aspen Plus?, and it can be observed that for the DPT-RD the energy consumption and the TAC are reduced, and the thermodynamic efficiency is increased as compared with the CRD process.
文摘The efficiency,robustness and reliability of recent numerical methods for finding solutions to flow problems have given rise to the implementation of computational fluid dynamics(CFD) as a broadly used analysis method for engineering problems like membrane separation system.The CFD modeling in this study observes steady and unsteady(transient) heat flux and temperature profiles in a polymeric(cellulose acetate) membrane.This study is novel due to the implementation of user defined scalar(UDS) diffusion equation by using user-defined functions(UDFs) infinite volume method(FVM).Some details of the FVM used by the solver are carefully discussed when implementing terms in the governing equation and boundary conditions(BC).The contours of temperature due to high-temperature gradient are reported for steady and unsteady problems.