期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
La_(1-x)Sr_xFeO_3钙钛矿型氧化物中的晶格氧用于甲烷部分氧化制合成气 被引量:10
1
作者 赵坤 何方 +3 位作者 黄振 郑安庆 李海滨 赵增立 《催化学报》 SCIE EI CAS CSCD 北大核心 2014年第7期1196-1205,共10页
采用燃烧法制备了Sr掺杂钙钛矿型氧化物La1-xSrxFeO3(x=0,0.3,0.5,0.9)载氧体,对载氧体分别进行X射线衍射、扫描电镜和H2程序升温还原反应表征,在热重循环装置和固定床反应装置上考察甲烷与载氧体晶格氧的部分氧化反应.结果表明,La1-xSr... 采用燃烧法制备了Sr掺杂钙钛矿型氧化物La1-xSrxFeO3(x=0,0.3,0.5,0.9)载氧体,对载氧体分别进行X射线衍射、扫描电镜和H2程序升温还原反应表征,在热重循环装置和固定床反应装置上考察甲烷与载氧体晶格氧的部分氧化反应.结果表明,La1-xSrxFeO3氧化物中的晶格氧适用于甲烷部分氧化制合成气,晶格氧的得失是一个可逆过程,Sr的掺杂提高了载氧体的供氧能力,5次循环后载氧体得失晶格氧的能力没有明显的衰减.从甲烷转化率、n(H2)/n(CO)比以及H2和CO的选择性等方面来考虑,x=0.3–0.5比较理想,甲烷转化率维持在70%左右,气体产物中n(H2)/n(CO)约为2,CH4没有发生明显的裂解. 展开更多
关键词 钙钛矿 晶格氧 热重循环 部分氧化 合成气
下载PDF
Theoretical Study on Vibrational Spectra, Detonation Properties and Pyrolysis Mechanism for Cyclic 2-Diazo-4,6-dinitrophenol
2
作者 Xiao-hong Li Geng-xin Yin Xian-zhou Zhang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2012年第5期545-551,I0003,共8页
Based on the full optimized molecular geometrical structures at the DFT-B3LYP/6- 311+G^** level, there exists intramolecular hydrogen bond interaction for cyclic 2-diazo- 4,6-dinitrophenol. The assigned infrared sp... Based on the full optimized molecular geometrical structures at the DFT-B3LYP/6- 311+G^** level, there exists intramolecular hydrogen bond interaction for cyclic 2-diazo- 4,6-dinitrophenol. The assigned infrared spectrum is obtained and used to compute the thermodynamic properties. The results show that there are four main characteristic regions in the calculated IR spectra of the title compound. The detonation velocities and pressures are also evaluated by using Kamlet-Jacobs equations based on the calculated density and condensed phase heat of formation. Thermal stability and the pyrolysis mechanism of 2- diazo-4,6-dinitrophenol are investigated by calculating the bond dissociation energies at the B3LYP/6-311+G^** level. 展开更多
关键词 Cyclic 2-diazo-4 6-dinitrophenol Pyrolysis mechanism Detonation property Infrarecl spectrum
下载PDF
Industrialization prospects for hydrogen production by coal gasification in supercritical water and novel thermodynamic cycle power generation system with no pollution emission 被引量:10
3
作者 GUO LieJin JIN Hui +2 位作者 GE ZhiWei LU YouJun CAO ChangQing 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第12期1989-2002,共14页
Energy conversion and utilization, particularly carbon-based fuel burning in air phase, have caused great environmental pollution and serious problems to society. The reactions in water phase may have the potential to... Energy conversion and utilization, particularly carbon-based fuel burning in air phase, have caused great environmental pollution and serious problems to society. The reactions in water phase may have the potential to realize clean and efficient energy conversion and utilization. Coal gasification in supercritical water is a typical carbon-based fuel conversion process in water phase, and it takes the advantages of the unique chemical and physical properties of supercritical water to convert organic matter in coal to H2 and CO2. N, S, P, Hg and other elements are deposited as inorganic salts to avoid pollution emission. The State Key Laboratory of Multiphase Flow in Power Engineering has obtained extensive experimental and theoretical results based on coal gasification in supercritical water. Supercritical water fluidized bed reactor was developed for coal gasification and seven kinds of typical feedstock were selected. The hydrogen yield covers from 0.67 to 1.74 Nm3/kg and the carbon gasification efficiency is no less than 97%. This technology has a bright future in industrialization not only in electricity generation but also in hydrogen production and high value-added chemicals. Given the gas yield obtained in laboratory-scale unit, the hydrogen production cost is U.S.$ 0.111 Nm3 when the throughput capacity is 2000 t/d. A novel thermodynamic cycle power generation system based on coal gasification in supercritical water was proposed with the obvious advantages of high coal-electricity conversion efficiency and zero pollutant emission. The cost of U.S.$ 3.69 billion for desulfuration, denitration and dust removal in China in 2013 would have been saved with this technology. Five kinds of heat supply methods are analyzed and the rates of return of investment are roughly estimated. An integrated cooperative innovation center called a new type of high-efficient coal gasification technology and its large-scale utilization was founded to enhance the industrialization of the technology vigorously. 展开更多
关键词 industrialization prospects hydrogen production supercritical water gasification power generation zero emission
原文传递
Overall optimization of Rankine cycle system for waste heat recovery of heavy-duty vehicle diesel engines considering the cooling power consumption 被引量:4
4
作者 YANG Can XIE Hui ZHOU Sheng K 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第2期309-321,共13页
The Rankine cycle system for waste heat recovery of heavy-duty vehicle diesel engines has been regarded as a promising tech- nique to reduce fuel consumption. Its heat dissipation in the condensation process, however,... The Rankine cycle system for waste heat recovery of heavy-duty vehicle diesel engines has been regarded as a promising tech- nique to reduce fuel consumption. Its heat dissipation in the condensation process, however, should be take:l away in time, which is an energy-consuming process. A fan-assisted auxiliary water-cooling system is employed in this paper. Results at 1300 r/min and 50% load indicate that the cooling pump and cooling fan together consume 7.66% of the recovered power. What's worse for the heavy load, cooling accessories may deplete of all the recovered power of the Rankine cycle system. Af- terwards, effects of the condensing pressure and water feeding temperature are investigated, based on which a cooling power consumption model is established. Finally, an overall efficiency optimization is conducted to balance the electric power gener- ation and cooling power consumption, taking condensing pressure, pressure ratio and exhaust bypass valve as major variables. The research suggests that the priority is to increase condensing pressure and open exhaust bypass valve appropriately at high speed and heavy load to reduce the cooling power consumption, while at low speed and light load, a lower condensing pressure is favored and the exhaust bypass valve should be closed making the waste heat recovered as much as possible. Within the sub-critical region, a larger pressure ratio yields higher overall efficiency improvement at medium-low speed and load. But the effects taper off at high speed and heavy load. For a given vehicular heavy-duty diesel engine, the overall e:'ficiency can be improved by 3.37% at 1300 r/min and 25% load using a Rankine cycle system to recover exhaust energy. The improvement becomes smaller as engine speed and load become higher. 展开更多
关键词 vehicular diesel engines Rankine cycle system cooling power consumption waste heat recovery overalloptimization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部