In order to evaluate the spontaneous combustion hazard of sulfide concentrates in storage, three different kinds of sulfide concentrates (sulfur-rich sulfide concentrate, iron sulfide concentrate and copper sulfide c...In order to evaluate the spontaneous combustion hazard of sulfide concentrates in storage, three different kinds of sulfide concentrates (sulfur-rich sulfide concentrate, iron sulfide concentrate and copper sulfide concentrate) were obtained from a storage yard in Dongguashan Copper Mine, China. The reaction processes at different heating rates of 5, 10, 15, 20, and 25 ℃/min in air flow from ambient temperature to 1 000 ℃ were studied by TG-DTG-DSC analysis. By the peak temperatures of DTG curves, the whole reaction process for each sample was divided into different stages, and the corresponding apparent activation energies were calculated by the Ozawa-Flynn-Wall method. It is found that the reaction process of each sample is considerably complex; the apparent activation energy values change from 36 to 160 kJ/mol in different temperature ranges; sulfur-rich sulfide and iron sulfide concentrates have lower apparent activation energy than copper sulfide concentrate below 150 ℃; so they are more inclined to cause spontaneous combustion at ambient temperature.展开更多
采用柠檬酸为络合剂,溶胶-凝胶法制备系列CeO_2-CuO/ZnO/Al_2O_3,在3.0 MPa压力和220~230℃反应条件下,甲苯二胺(TDA)和乙烯催化合成二乙基甲苯二胺(DETDA)为探针反应,考察其催化性能,其中CeO_2掺杂量为3%,催化活性最高。通过X射线衍射(...采用柠檬酸为络合剂,溶胶-凝胶法制备系列CeO_2-CuO/ZnO/Al_2O_3,在3.0 MPa压力和220~230℃反应条件下,甲苯二胺(TDA)和乙烯催化合成二乙基甲苯二胺(DETDA)为探针反应,考察其催化性能,其中CeO_2掺杂量为3%,催化活性最高。通过X射线衍射(XRD)、傅里叶红外光谱(FT-IR)、差热重量分析法(DTG-DTA)、核磁氢谱1 H NMR对CeO_2-CuO/ZnO/Al_2O_3、DETDA、TDA进行检测和表征,揭示了它们的微观结构和内在规律性。XRD检测发现CeO_2掺杂量增多,CeO_2-CuO/ZnO/Al_2O_3衍射峰强度增强,提高了晶化程度,金属原子存在协同效应,增多了活性中心。FT-IR揭示了DETDA内部化学键键型,拥有甲基、亚甲基的多取代芳胺。DTG-DTA检测出的质量变化与热效应两种信息,DETDA的DTG-DTA曲线在66.0、271.0℃存在二个吸热峰,分别为氨基脱离苯环、DETDA的分解产生。通过1 H NMR对DETDA、TDA检测,得到DETDA、TDA的氢原子的数目分别为18和10,分子中各个氢核对应所归属的吸收峰,分别和它们分子式中的氢原子数目吻合。CeO_2-CuO/ZnO/Al_2O_3催化合成DETDA,反应条件温和,工艺流程简单,容易实现高效率和连续化工业生产,因此具有广阔的发展前景。展开更多
In this paper,the content and density of adsorbed water in fine-grained soil are determined.According to the test results,the calculation method of compaction degree of the solid-phase and void ration of soil is impro...In this paper,the content and density of adsorbed water in fine-grained soil are determined.According to the test results,the calculation method of compaction degree of the solid-phase and void ration of soil is improved.Four kinds of fine-grained soils from different regions in China were selected,and the adsorbed water content and density of four kinds of fine-grained soils were determined by thermogravimetry and volumetric flask method.Furthermore,SEM and XRD experiments were used to analyze the differences in the ability of each soil sample to absorb water.In order to study the compression characteristics of adsorbed water,four saturated soil samples were tested by consolidation method.The results show that the desorption temperature range of the adsorbed water and its density were equal to 100−115℃and 1.30 g/cm^(3),respectively.Adsorbed water plays a positive role in keeping the compressibility of fine-grained soil at a low rate when it has high water content.Besides,adsorbed water can be a stable parameter and is difficult to discharge during the operation period of subgrade.The settlement of fine-grained soil embankment is predicted by engineering example,and compared with the result of conventional calculation method.The results show that it is more close to the field monitoring results by using the improved void ratio of soil as the parameter.展开更多
A sol-gel synthetic approach combined with an ultrasonic method was utilized to prepare Al/B/Fe2O3 nanothermites.The structure and properties of the prepared nanothermites were characterized by thermogravimetric analy...A sol-gel synthetic approach combined with an ultrasonic method was utilized to prepare Al/B/Fe2O3 nanothermites.The structure and properties of the prepared nanothermites were characterized by thermogravimetric analysis,differential scanning calorimetry,scanning electron microscopy,X-ray diffraction,and an impact sensitivity test.The results verified that the nano-aluminum and the micro-boron were uniformly dispersed in the pores of the iron oxide gel.The heat of the prepared Al/B/Fe2O3 nanothermites was 1.3 times that of the simple physically mixed sample.In addition,the heat of the combustion test showed that these materials were indeed energetic.Small-scale safe experiments also showed that the prepared materials through sol-gel were relatively insensitive to standard impact.展开更多
基金Project (2006BAK04B03) supported by the National Science and Technology Pillar Program during the 11th Five-Year Plan Period of ChinaProject (kjdb200902-7) supported by Doctoral Candidate Innovation Research Support Program of Science & Technology Review, China+1 种基金Project (1960-71131100023) supported by Postgraduate Dissertation Innovation Foundation of Central South University, ChinaProject (ZKJ2009008) supported by Precious Apparatus Opening Center Foundation of Central South University, China
文摘In order to evaluate the spontaneous combustion hazard of sulfide concentrates in storage, three different kinds of sulfide concentrates (sulfur-rich sulfide concentrate, iron sulfide concentrate and copper sulfide concentrate) were obtained from a storage yard in Dongguashan Copper Mine, China. The reaction processes at different heating rates of 5, 10, 15, 20, and 25 ℃/min in air flow from ambient temperature to 1 000 ℃ were studied by TG-DTG-DSC analysis. By the peak temperatures of DTG curves, the whole reaction process for each sample was divided into different stages, and the corresponding apparent activation energies were calculated by the Ozawa-Flynn-Wall method. It is found that the reaction process of each sample is considerably complex; the apparent activation energy values change from 36 to 160 kJ/mol in different temperature ranges; sulfur-rich sulfide and iron sulfide concentrates have lower apparent activation energy than copper sulfide concentrate below 150 ℃; so they are more inclined to cause spontaneous combustion at ambient temperature.
文摘采用柠檬酸为络合剂,溶胶-凝胶法制备系列CeO_2-CuO/ZnO/Al_2O_3,在3.0 MPa压力和220~230℃反应条件下,甲苯二胺(TDA)和乙烯催化合成二乙基甲苯二胺(DETDA)为探针反应,考察其催化性能,其中CeO_2掺杂量为3%,催化活性最高。通过X射线衍射(XRD)、傅里叶红外光谱(FT-IR)、差热重量分析法(DTG-DTA)、核磁氢谱1 H NMR对CeO_2-CuO/ZnO/Al_2O_3、DETDA、TDA进行检测和表征,揭示了它们的微观结构和内在规律性。XRD检测发现CeO_2掺杂量增多,CeO_2-CuO/ZnO/Al_2O_3衍射峰强度增强,提高了晶化程度,金属原子存在协同效应,增多了活性中心。FT-IR揭示了DETDA内部化学键键型,拥有甲基、亚甲基的多取代芳胺。DTG-DTA检测出的质量变化与热效应两种信息,DETDA的DTG-DTA曲线在66.0、271.0℃存在二个吸热峰,分别为氨基脱离苯环、DETDA的分解产生。通过1 H NMR对DETDA、TDA检测,得到DETDA、TDA的氢原子的数目分别为18和10,分子中各个氢核对应所归属的吸收峰,分别和它们分子式中的氢原子数目吻合。CeO_2-CuO/ZnO/Al_2O_3催化合成DETDA,反应条件温和,工艺流程简单,容易实现高效率和连续化工业生产,因此具有广阔的发展前景。
基金Project(51978085)supported by the National Natural Science Foundation of ChinaProject(K2019G045)supported by the Science and Technology Research and Development Plan of China National Railway Group Co.,Ltd.Project(201808430102)supported by the China Scholarship Council。
文摘In this paper,the content and density of adsorbed water in fine-grained soil are determined.According to the test results,the calculation method of compaction degree of the solid-phase and void ration of soil is improved.Four kinds of fine-grained soils from different regions in China were selected,and the adsorbed water content and density of four kinds of fine-grained soils were determined by thermogravimetry and volumetric flask method.Furthermore,SEM and XRD experiments were used to analyze the differences in the ability of each soil sample to absorb water.In order to study the compression characteristics of adsorbed water,four saturated soil samples were tested by consolidation method.The results show that the desorption temperature range of the adsorbed water and its density were equal to 100−115℃and 1.30 g/cm^(3),respectively.Adsorbed water plays a positive role in keeping the compressibility of fine-grained soil at a low rate when it has high water content.Besides,adsorbed water can be a stable parameter and is difficult to discharge during the operation period of subgrade.The settlement of fine-grained soil embankment is predicted by engineering example,and compared with the result of conventional calculation method.The results show that it is more close to the field monitoring results by using the improved void ratio of soil as the parameter.
文摘A sol-gel synthetic approach combined with an ultrasonic method was utilized to prepare Al/B/Fe2O3 nanothermites.The structure and properties of the prepared nanothermites were characterized by thermogravimetric analysis,differential scanning calorimetry,scanning electron microscopy,X-ray diffraction,and an impact sensitivity test.The results verified that the nano-aluminum and the micro-boron were uniformly dispersed in the pores of the iron oxide gel.The heat of the prepared Al/B/Fe2O3 nanothermites was 1.3 times that of the simple physically mixed sample.In addition,the heat of the combustion test showed that these materials were indeed energetic.Small-scale safe experiments also showed that the prepared materials through sol-gel were relatively insensitive to standard impact.