Materials-development projects for advanced ultra-supercritical(A-USC) power plants with steam temperatures of 700℃ and above have been performed in order to achieve high efficiency and low CO_2 emissions in Europe, ...Materials-development projects for advanced ultra-supercritical(A-USC) power plants with steam temperatures of 700℃ and above have been performed in order to achieve high efficiency and low CO_2 emissions in Europe, the US, Japan, and recently in China and India as well. These projects involve the replacement of martensitic 9%–12% Cr steels with nickel(Ni)-base alloys for the highest temperature boiler and turbine components in order to provide sufficient creep strength at 700℃ and above. To minimize the requirement for expensive Ni-base alloys, martensitic 9%–12% Cr steels can be applied to the next highest temperature components of an A-USC power plant, up to a maximum of 650℃. This paper comprehensively describes the research and development of Ni-base alloys and martensitic 9%–12% Cr steels for thick section boiler and turbine components of A-USC power plants, mainly focusing on the long-term creep-rupture strength of base metal and welded joints, strength loss in welded joints, creep-fatigue properties, and microstructure evolution during exposure at elevated temperatures.展开更多
Information about soil nitric oxide (NO) emissions from subtropical forests is quite limited, and even less is known about the pulse emission of NO when wetting soils after a long period of dryness. In this study, w...Information about soil nitric oxide (NO) emissions from subtropical forests is quite limited, and even less is known about the pulse emission of NO when wetting soils after a long period of dryness. In this study, we measured NO fluxes following wetting of dry soft in a broadleaf forest and a pine forest in subtropical China. Large pulses of NO fluxes were observed after soil wetting in both forests. NO fluxes increased significantly within 0.5 h following wetting in both forests and reached peak 1 and 4 h after soil wetting in the pine forest and the broadleaf forest, respectively. In the broadleaf forest, averaged peak flux of NO pulses was 157 ng N m^-2 s^-1, which was 8 times the flux value before wetting, and in the pine forest, the averaged peak flux was 135 ng N m-2 s 1, which was 15.5 times the flux value before wetting. The total pulses-induced NO emissions during the dry season were roughly estimated to be 29.4 mg N m^-2 in the broadleaf forest and 22.2 mg N m^-2 in the pine forest or made up a proportion of 4.6% of the annual NO emission in the broadleaf forest and 5.3% in the pine forest.展开更多
Recovering waste heat from industrial processes is bene ficial in order to reduce the primary energy demands and heat pumps can be used to this purpose.Absorption heat pumps are energy-saving and environment-friendly ...Recovering waste heat from industrial processes is bene ficial in order to reduce the primary energy demands and heat pumps can be used to this purpose.Absorption heat pumps are energy-saving and environment-friendly because use working fluids that do not cause ozone depletion and can reduce the global warming emissions.The hybrid heat pump processes combine the conventional vapor-compression and the absorption heat pump cycles.Studies about the simulations and modeling of hybrid heat pumps are few in literature.In this research a mathematical model for single effect absorption and hybrid heat pump is carried out with Chem Cad? 6.0.1.LiBr–H_2O is used as working fluid while electrolytic NRTL and electrolytes latent heat are used as thermodynamic model due to the better results.Binary parameters of activity coef ficients are regressed from experimental vapor pressure data while default constants are used for the solubility expressions.A design of heat pumps is developed and a new modeling of generator is analyzed.The coef ficient of performance of absorption heat pump and hybrid heat pump is equal to 0.7 and 0.83 respectively.For absorption heat pump a sensitivity analysis is carried out to evaluate the effect of temperature and pressure generator,the concentration of Li–Br solution on coef ficient of performance,cooling capacity and working fluid temperature.For hybrid heat pump,the different coef ficients of performance,the primary energy ratio,the generator heat,and the compressor power are analyzed for different values of compressor proportion.Results show that comparing the two systems the hybrid pump allows to save more primary energy,costs and carbon dioxide emissions with respect to absorption heat pump with the increasing of compressor proportion parameter.Future researches should focus on the construction of this heat pumps integrated in chemical processes as a biogas plant or trigeneration systems.展开更多
Energy saving and CO2 emissions reduction are critical tasks currently,and great effort has been made by Chinese government. Renewable energy consumption and CO2 emissions and reduction plan in China are introduced in...Energy saving and CO2 emissions reduction are critical tasks currently,and great effort has been made by Chinese government. Renewable energy consumption and CO2 emissions and reduction plan in China are introduced in this paper. Analysis is also made on present status and prospect of geothermal power generation and direct use in China respectively. Now,there is a new understanding of geothermal resources,and hot dry rock,considered as the future of geothermal resources,is likely used to generate electricity.展开更多
Oxy fuel combustion and conventional cycle(currently working cycle) in Kazeroon plant are modeled using commercial thermodynamic modeling software. Economic evaluation of the two models regarding the resources of tran...Oxy fuel combustion and conventional cycle(currently working cycle) in Kazeroon plant are modeled using commercial thermodynamic modeling software. Economic evaluation of the two models regarding the resources of transport and injection of carbon dioxide into oil fields at Gachsaran for enhanced oil recovery in the various oil price indices is conducted and indices net present value(NPV) and internal rate of return on investment(IRR) are calculated. The results of the two models reveal that gross efficiency of the oxy fuel cycle is more than reference cycle(62% compared to 49.03%), but the net efficiency is less(41.85% compared to 47.92%) because of the high-energy consumption of the components, particularly air separation unit(ASU) in the oxy fuel cycle. In this model, pure carbon dioxide with pressure of 20×105 Pa and purity of 96.84% was captured. NOX emissions also decrease by 4289.7 tons per year due to separation of nitrogen in ASU. In this model, none of the components of oxy fuel cycle is a major engineering challenge. With increasing oil price, economic justification of oxy fuel combustion model increases. With the price of oil at $ 80 per barrel in mind and $ 31 per ton fines for emissions of carbon dioxide in the atmosphere, IRR is the same for both models.展开更多
Achieving simultaneous reduction of NOx,CO and unburned hydrocarbon(UHC) emissions without compromising engine performance at part loads is the current focus of dual fuel engine research.The present work focuses on an...Achieving simultaneous reduction of NOx,CO and unburned hydrocarbon(UHC) emissions without compromising engine performance at part loads is the current focus of dual fuel engine research.The present work focuses on an experimental investigation conducted on a dual fuel(diesel-natural gas) engine to examine the simultaneous effect of inlet air pre-heating and exhaust gas recirculation(EGR) ratio on performance and emission characteristics at part loads.The use of EGR at high levels seems to be unable to improve the engine performance at part loads.However,it is shown that EGR combined with pre-heating of inlet air can slightly increase thermal efficiency,resulting in reduced levels of both unburned hydrocarbon and NOx emissions.CO and UHC emissions are reduced by 24% and 31%,respectively,The NOx emissions decrease by 21% because of the lower combustion temperature due to the much inert gas brought by EGR and decreased oxygen concentration in the cylinder.展开更多
Developing countries as Mexico lack their own emission factors for thermoelectric power plants, so they have the need to develop them, considering specific operation conditions for each plant. This study develops spec...Developing countries as Mexico lack their own emission factors for thermoelectric power plants, so they have the need to develop them, considering specific operation conditions for each plant. This study develops specific emission factors in Mexico for: sulfur dioxide (SO2), nitrogen oxides (NOx) and particles, for thermoelectric power plants that use fuel oil. This work was necessary due to the differences found between the measured and the calculated emissions, using emission factors of different agencies, such as, US-EPA (Environmental Protection Agency of the United States), IPCC (Intergovernmental Panel on Climate Change), and UK-NAEI (National Atmospheric Emissions Inventory of the United Kingdom). The new emission factors were used to calculate the emissions of a thermoelectric power plant in Mexico. The comparisons between the measured and the calculated emissions (with the new emission factors) for 502, particles and NO2 were not significantly different (p 〉 0.05).展开更多
The renewable energy will play significant role in the world primary energy consumption in the future. Geothermal energy is immense with 5 000 EJ/a of technical potential, and geothermal heat pumps (GHPs) are one of t...The renewable energy will play significant role in the world primary energy consumption in the future. Geothermal energy is immense with 5 000 EJ/a of technical potential, and geothermal heat pumps (GHPs) are one of the fastest growing applications of renewable energy in the world with annual increases of 10 % and much faster in China. With high coefficient of performance (COP) up to 6, GHPs make efficiency of primary energy more than 240 % with assumed a 40 % of electricity generation efficiency, which means energy savings and CO2 emission reduction. In this paper,the geothermal resources and its utilization are talked about, and GHPs technology was introduced. Due to its high efficiency, there will be energy savings by using GHPs. There is also CO2 emission reduction because of using geothermal heat pumps, which is analyzed in the end.展开更多
To achieve CO2 emissions reductions, the UK Building Regulations require developers of new residential buildings to calculate expected CO2 emissions arising from their energy consumption using a methodology such as St...To achieve CO2 emissions reductions, the UK Building Regulations require developers of new residential buildings to calculate expected CO2 emissions arising from their energy consumption using a methodology such as Standard Assessment Procedure (SAP 2005) or, more recently SAP 2009. SAP encompasses all domestic heat consumption and a limited proportion of the electricity consumption. However, these calculations are rarely verified with real energy consumption and related CO2 emissions. This work presents the results of an analysis based on weekly heat demand data for more than 200 individual fiats. The data were collected from a recently built residential development connected to a district heating network. A method for separating out the domestic hot water (DHW) use and space heating (SH) demand has been developed and these values are compared to the demand calculated using SAP 2005 and SAP 2009 methodologies. The analysis also shows the variation in DHW and SH consumption with size of flats and with tenure (privately owned or social housing). Evaluation of the space heating consumption also includes an estimate of the heating degree day (HDD) base temperature for each block of fiats and compares this to the average base temperature calculated using the SAP 2005 methodology.展开更多
The building sector has a significant weight in the global energy consumption in almost of the countries. So, there is a high potential for increasing its energy efficiency. With the enforcement of the energetic certi...The building sector has a significant weight in the global energy consumption in almost of the countries. So, there is a high potential for increasing its energy efficiency. With the enforcement of the energetic certification, it was tried to select different solutions that presents less energy consumption and waste, as well as an effective reduction of CO2 emissions. This work fits in this perspective, since the main goal is to evaluate the contribution of passive and active solutions that can be used in buildings for the improvement of its energetic efficiency, as well as to evaluate the contribution of renewable energy sources. Contribution of solar systems for hot water heating and electric energy production has been studied, as well as cogeneration, Combined Heat and Power (CHP). The case studied is a hotel. To improve the building performance, there were proposed several changes, with the goal of evaluating the contribution of the different solutions proposed. It was concluded that they contribute to a reduction of thermal needs of 25.2% and avoided emissions of CO2 is 30.4%. The analysis of the implementation of trigeneration, Combined Heat, Cooling and Power (CHCP) turns it executable. The payback period is less than 8 years.展开更多
The flux of carbon dioxide (CO2) from soil surface presents an important component of carbon (C) cycle in terrestrial ecosystems and is controlled by a number of biotic and abiotic factors. In order to better unde...The flux of carbon dioxide (CO2) from soil surface presents an important component of carbon (C) cycle in terrestrial ecosystems and is controlled by a number of biotic and abiotic factors. In order to better understand characteristics of soil CO2 flux (FCO2) in subtropical forests, soil FCO2 rates were quantified in five adjacent forest types (camphor tree forest, Masson pine forest, mixed camphor tree and Masson pine forest, Chinese sweet gum forest, and slash pine forest) at the Tianjiling National Park in Changsha, Hunan Province, in subtropical China, from January to December 2010. The influences of soil temperature (Tsoil), volumetric soil water content (0soiI), soil pH, soil organic carbon (SOC) and soil C/nitrogen (N) ratio on soil FCO2 rates were also investigated. The annual mean soil FCO2 rate varied with the forest types. The soil FCO2 rate was the highest in the camphor tree forest (3.53 ± 0.51 μmol m-2 s-I), followed by, in order, the mixed, Masson pine, Chinese sweet gum, and slash pine forests (1.53 ± 0.25 μmol m-2 sl). Soil FCO2 rates from the five forest types followed a similar seasonal pattern with the maximum values occurring in summer (July and August) and the minimum values during winter (December and January). Soil FCO2 rates were correlated to Tsoil and 0soil, but the relationships were only significant for Tsoil. No correlations were found between soil FCO2 rates and other selected soil properties, such as soil pH, SOC, and C/N ratio, in the examined forest types. Our results indicated that soil FCO2 rates were much higher in the evergreen broadleaved forest than coniferous forest under the same microclimatic environment in the study region.展开更多
By controlling the reactant ratios, hydrothermal time, hydrothermal temperatures, p H values of the prepared solutions, and the concentrations of K3C6H5O7·2H2O, 1 mol% Eu3+ doped cubic phase of K5Gd9F32 and/or or...By controlling the reactant ratios, hydrothermal time, hydrothermal temperatures, p H values of the prepared solutions, and the concentrations of K3C6H5O7·2H2O, 1 mol% Eu3+ doped cubic phase of K5Gd9F32 and/or orthorhombic phase of Gd F3 micro/nanocrystals have been synthesized based on a hydrothermal method. For comparison, the sample was also synthesized by a co-precipitation method. The samples were characterized by X-ray diffraction(XRD) patterns, field emission scanning electron microscopy(FE-SEM) images, energy-dispersive spectroscopy(EDS) spectra, and photoluminescence(PL) excitation and emission spectra. By host Gd3+ sensitizing, the Eu3+ presents relatively strong emissions. The energy transfers from host Gd3+ to doping Eu3+ are observed in all the samples and the energy transfer plays an important role in the emission of Eu3+. Acting as a probe, the Eu3+ presents its distinct optical properties in the samples.展开更多
文摘Materials-development projects for advanced ultra-supercritical(A-USC) power plants with steam temperatures of 700℃ and above have been performed in order to achieve high efficiency and low CO_2 emissions in Europe, the US, Japan, and recently in China and India as well. These projects involve the replacement of martensitic 9%–12% Cr steels with nickel(Ni)-base alloys for the highest temperature boiler and turbine components in order to provide sufficient creep strength at 700℃ and above. To minimize the requirement for expensive Ni-base alloys, martensitic 9%–12% Cr steels can be applied to the next highest temperature components of an A-USC power plant, up to a maximum of 650℃. This paper comprehensively describes the research and development of Ni-base alloys and martensitic 9%–12% Cr steels for thick section boiler and turbine components of A-USC power plants, mainly focusing on the long-term creep-rupture strength of base metal and welded joints, strength loss in welded joints, creep-fatigue properties, and microstructure evolution during exposure at elevated temperatures.
基金Project supported by the National Key Basic Research and Development Program of China (No. 2002CB410803)
文摘Information about soil nitric oxide (NO) emissions from subtropical forests is quite limited, and even less is known about the pulse emission of NO when wetting soils after a long period of dryness. In this study, we measured NO fluxes following wetting of dry soft in a broadleaf forest and a pine forest in subtropical China. Large pulses of NO fluxes were observed after soil wetting in both forests. NO fluxes increased significantly within 0.5 h following wetting in both forests and reached peak 1 and 4 h after soil wetting in the pine forest and the broadleaf forest, respectively. In the broadleaf forest, averaged peak flux of NO pulses was 157 ng N m^-2 s^-1, which was 8 times the flux value before wetting, and in the pine forest, the averaged peak flux was 135 ng N m-2 s 1, which was 15.5 times the flux value before wetting. The total pulses-induced NO emissions during the dry season were roughly estimated to be 29.4 mg N m^-2 in the broadleaf forest and 22.2 mg N m^-2 in the pine forest or made up a proportion of 4.6% of the annual NO emission in the broadleaf forest and 5.3% in the pine forest.
文摘Recovering waste heat from industrial processes is bene ficial in order to reduce the primary energy demands and heat pumps can be used to this purpose.Absorption heat pumps are energy-saving and environment-friendly because use working fluids that do not cause ozone depletion and can reduce the global warming emissions.The hybrid heat pump processes combine the conventional vapor-compression and the absorption heat pump cycles.Studies about the simulations and modeling of hybrid heat pumps are few in literature.In this research a mathematical model for single effect absorption and hybrid heat pump is carried out with Chem Cad? 6.0.1.LiBr–H_2O is used as working fluid while electrolytic NRTL and electrolytes latent heat are used as thermodynamic model due to the better results.Binary parameters of activity coef ficients are regressed from experimental vapor pressure data while default constants are used for the solubility expressions.A design of heat pumps is developed and a new modeling of generator is analyzed.The coef ficient of performance of absorption heat pump and hybrid heat pump is equal to 0.7 and 0.83 respectively.For absorption heat pump a sensitivity analysis is carried out to evaluate the effect of temperature and pressure generator,the concentration of Li–Br solution on coef ficient of performance,cooling capacity and working fluid temperature.For hybrid heat pump,the different coef ficients of performance,the primary energy ratio,the generator heat,and the compressor power are analyzed for different values of compressor proportion.Results show that comparing the two systems the hybrid pump allows to save more primary energy,costs and carbon dioxide emissions with respect to absorption heat pump with the increasing of compressor proportion parameter.Future researches should focus on the construction of this heat pumps integrated in chemical processes as a biogas plant or trigeneration systems.
文摘Energy saving and CO2 emissions reduction are critical tasks currently,and great effort has been made by Chinese government. Renewable energy consumption and CO2 emissions and reduction plan in China are introduced in this paper. Analysis is also made on present status and prospect of geothermal power generation and direct use in China respectively. Now,there is a new understanding of geothermal resources,and hot dry rock,considered as the future of geothermal resources,is likely used to generate electricity.
文摘Oxy fuel combustion and conventional cycle(currently working cycle) in Kazeroon plant are modeled using commercial thermodynamic modeling software. Economic evaluation of the two models regarding the resources of transport and injection of carbon dioxide into oil fields at Gachsaran for enhanced oil recovery in the various oil price indices is conducted and indices net present value(NPV) and internal rate of return on investment(IRR) are calculated. The results of the two models reveal that gross efficiency of the oxy fuel cycle is more than reference cycle(62% compared to 49.03%), but the net efficiency is less(41.85% compared to 47.92%) because of the high-energy consumption of the components, particularly air separation unit(ASU) in the oxy fuel cycle. In this model, pure carbon dioxide with pressure of 20×105 Pa and purity of 96.84% was captured. NOX emissions also decrease by 4289.7 tons per year due to separation of nitrogen in ASU. In this model, none of the components of oxy fuel cycle is a major engineering challenge. With increasing oil price, economic justification of oxy fuel combustion model increases. With the price of oil at $ 80 per barrel in mind and $ 31 per ton fines for emissions of carbon dioxide in the atmosphere, IRR is the same for both models.
文摘Achieving simultaneous reduction of NOx,CO and unburned hydrocarbon(UHC) emissions without compromising engine performance at part loads is the current focus of dual fuel engine research.The present work focuses on an experimental investigation conducted on a dual fuel(diesel-natural gas) engine to examine the simultaneous effect of inlet air pre-heating and exhaust gas recirculation(EGR) ratio on performance and emission characteristics at part loads.The use of EGR at high levels seems to be unable to improve the engine performance at part loads.However,it is shown that EGR combined with pre-heating of inlet air can slightly increase thermal efficiency,resulting in reduced levels of both unburned hydrocarbon and NOx emissions.CO and UHC emissions are reduced by 24% and 31%,respectively,The NOx emissions decrease by 21% because of the lower combustion temperature due to the much inert gas brought by EGR and decreased oxygen concentration in the cylinder.
文摘Developing countries as Mexico lack their own emission factors for thermoelectric power plants, so they have the need to develop them, considering specific operation conditions for each plant. This study develops specific emission factors in Mexico for: sulfur dioxide (SO2), nitrogen oxides (NOx) and particles, for thermoelectric power plants that use fuel oil. This work was necessary due to the differences found between the measured and the calculated emissions, using emission factors of different agencies, such as, US-EPA (Environmental Protection Agency of the United States), IPCC (Intergovernmental Panel on Climate Change), and UK-NAEI (National Atmospheric Emissions Inventory of the United Kingdom). The new emission factors were used to calculate the emissions of a thermoelectric power plant in Mexico. The comparisons between the measured and the calculated emissions (with the new emission factors) for 502, particles and NO2 were not significantly different (p 〉 0.05).
文摘The renewable energy will play significant role in the world primary energy consumption in the future. Geothermal energy is immense with 5 000 EJ/a of technical potential, and geothermal heat pumps (GHPs) are one of the fastest growing applications of renewable energy in the world with annual increases of 10 % and much faster in China. With high coefficient of performance (COP) up to 6, GHPs make efficiency of primary energy more than 240 % with assumed a 40 % of electricity generation efficiency, which means energy savings and CO2 emission reduction. In this paper,the geothermal resources and its utilization are talked about, and GHPs technology was introduced. Due to its high efficiency, there will be energy savings by using GHPs. There is also CO2 emission reduction because of using geothermal heat pumps, which is analyzed in the end.
文摘To achieve CO2 emissions reductions, the UK Building Regulations require developers of new residential buildings to calculate expected CO2 emissions arising from their energy consumption using a methodology such as Standard Assessment Procedure (SAP 2005) or, more recently SAP 2009. SAP encompasses all domestic heat consumption and a limited proportion of the electricity consumption. However, these calculations are rarely verified with real energy consumption and related CO2 emissions. This work presents the results of an analysis based on weekly heat demand data for more than 200 individual fiats. The data were collected from a recently built residential development connected to a district heating network. A method for separating out the domestic hot water (DHW) use and space heating (SH) demand has been developed and these values are compared to the demand calculated using SAP 2005 and SAP 2009 methodologies. The analysis also shows the variation in DHW and SH consumption with size of flats and with tenure (privately owned or social housing). Evaluation of the space heating consumption also includes an estimate of the heating degree day (HDD) base temperature for each block of fiats and compares this to the average base temperature calculated using the SAP 2005 methodology.
文摘The building sector has a significant weight in the global energy consumption in almost of the countries. So, there is a high potential for increasing its energy efficiency. With the enforcement of the energetic certification, it was tried to select different solutions that presents less energy consumption and waste, as well as an effective reduction of CO2 emissions. This work fits in this perspective, since the main goal is to evaluate the contribution of passive and active solutions that can be used in buildings for the improvement of its energetic efficiency, as well as to evaluate the contribution of renewable energy sources. Contribution of solar systems for hot water heating and electric energy production has been studied, as well as cogeneration, Combined Heat and Power (CHP). The case studied is a hotel. To improve the building performance, there were proposed several changes, with the goal of evaluating the contribution of the different solutions proposed. It was concluded that they contribute to a reduction of thermal needs of 25.2% and avoided emissions of CO2 is 30.4%. The analysis of the implementation of trigeneration, Combined Heat, Cooling and Power (CHCP) turns it executable. The payback period is less than 8 years.
基金Supported by the National Forestry Public Welfare Research Program of China(Nos.201104005 and 200804030)the Program for New Century Excellent Talents in University of Ministry of Education of China(No.NCET-10-0151)+1 种基金the 100 Talents Program of Hunan Province,China(No.2011516)Central South University of Forestry and Technology,China(No.0842)
文摘The flux of carbon dioxide (CO2) from soil surface presents an important component of carbon (C) cycle in terrestrial ecosystems and is controlled by a number of biotic and abiotic factors. In order to better understand characteristics of soil CO2 flux (FCO2) in subtropical forests, soil FCO2 rates were quantified in five adjacent forest types (camphor tree forest, Masson pine forest, mixed camphor tree and Masson pine forest, Chinese sweet gum forest, and slash pine forest) at the Tianjiling National Park in Changsha, Hunan Province, in subtropical China, from January to December 2010. The influences of soil temperature (Tsoil), volumetric soil water content (0soiI), soil pH, soil organic carbon (SOC) and soil C/nitrogen (N) ratio on soil FCO2 rates were also investigated. The annual mean soil FCO2 rate varied with the forest types. The soil FCO2 rate was the highest in the camphor tree forest (3.53 ± 0.51 μmol m-2 s-I), followed by, in order, the mixed, Masson pine, Chinese sweet gum, and slash pine forests (1.53 ± 0.25 μmol m-2 sl). Soil FCO2 rates from the five forest types followed a similar seasonal pattern with the maximum values occurring in summer (July and August) and the minimum values during winter (December and January). Soil FCO2 rates were correlated to Tsoil and 0soil, but the relationships were only significant for Tsoil. No correlations were found between soil FCO2 rates and other selected soil properties, such as soil pH, SOC, and C/N ratio, in the examined forest types. Our results indicated that soil FCO2 rates were much higher in the evergreen broadleaved forest than coniferous forest under the same microclimatic environment in the study region.
基金supported by the National Natural Science Foundation of China(Grant Nos.61205217,11204258,and 11464021)Natural Science Foundation of Jiangxi Province of China(Grant No.20142BAB202003)+5 种基金Foundation of Jiangxi Educational Committee of China(Grant Nos.GJJ14564 and GJJ14565)High-level Talent Project of Xiamen University of Technology(Grant No.YKJ14031R)Foreign Cooperation Project of Xiamen University of Technology(Grant No.E2014223007)National Science Foundation for Distinguished Young Scholars of Fujian Province(Grant No.2012J06024)the Outstanding Young Scientific Research Personnel Training Plan in Colleges and Universities of Fujian Province(Grant No.JA13229)supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT and Future Planning(Grant No.2013012655)
文摘By controlling the reactant ratios, hydrothermal time, hydrothermal temperatures, p H values of the prepared solutions, and the concentrations of K3C6H5O7·2H2O, 1 mol% Eu3+ doped cubic phase of K5Gd9F32 and/or orthorhombic phase of Gd F3 micro/nanocrystals have been synthesized based on a hydrothermal method. For comparison, the sample was also synthesized by a co-precipitation method. The samples were characterized by X-ray diffraction(XRD) patterns, field emission scanning electron microscopy(FE-SEM) images, energy-dispersive spectroscopy(EDS) spectra, and photoluminescence(PL) excitation and emission spectra. By host Gd3+ sensitizing, the Eu3+ presents relatively strong emissions. The energy transfers from host Gd3+ to doping Eu3+ are observed in all the samples and the energy transfer plays an important role in the emission of Eu3+. Acting as a probe, the Eu3+ presents its distinct optical properties in the samples.