X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses were carried out to investigate the surface species and interfacial reactions during bioleaching of chalcopyrite by different strains of ...X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses were carried out to investigate the surface species and interfacial reactions during bioleaching of chalcopyrite by different strains of moderately thermophilic bacteria (45 °C). Results show that monosulfide (CuS), disulfide (S22?), polysulfide (Sn2?), elemental sulfur (S0) and sulfate (SO42?) are the main intermediate species on the surface of chalcopyrite during bioleaching byA. caldus,S. thermosulfidooxidans andL. ferriphilum. The low kinetics of dissolution of chalcopyrite inA. caldus can be mainly attributed to the incomplete dissolution of chalcopyrite and the passivation layer of polysulfide. Polysulfide and jarosite should be mainly responsible for the passivation of chalcopyrite in bioleaching byL. ferriphilumorS. thermosulfidooxidans. However, elemental sulfur should not be the main composition of passivation layer of chalcopyrite during bioleaching.展开更多
The relatedness between catalytic effect of activated carbon and passivation phenomenon during chalcopyrite bioleachingby mixed thermophilic Archaea culture(Acidianus brierleyi,Metallosphaera sedula,Acidianus manzaens...The relatedness between catalytic effect of activated carbon and passivation phenomenon during chalcopyrite bioleachingby mixed thermophilic Archaea culture(Acidianus brierleyi,Metallosphaera sedula,Acidianus manzaensis and Sulfolobusmetallicus)at65°C was studied.Leaching experiments showed that the addition of activated carbon could significantly promote thedissolution of chalcopyrite for both bioleaching and chemical leaching.The results of synchrotron-based X-ray diffraction,ironL-edge and sulfur K-edge X-ray absorption near edge structure spectroscopy indicated that activated carbon could change thetransition path of electrons through galvanic interactions to form more readily dissolved secondary mineral chalcocite at a low redoxpotential(?400mV)and then enhanced the copper dissolution.Jarosite accumulated immediately in the initial stage of bioleachingwith activated carbon but copper dissolution was not hindered.However,much jarosite precipitated on the surface of chalcopyrite inthe late stage of bioleaching,which might account for the decrease of copper dissolution rate.More elemental sulfur(S0)was alsodetected with additional activated carbon but the mixed thermophilic Archaea culture had a great sulfur oxidation activity,thus S0waseliminated and seemed to have no significant influence on the dissolution of chalcopyrite.展开更多
基金Projects(51374248,51320105006)supported by the National Natural Science Foundation of ChinaProject(NCET-13-0595)supported by the Program for New Century Excellent Talents in University,ChinaProject(2014T70692)supported by China Postdoctoral Science Foundation
文摘X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses were carried out to investigate the surface species and interfacial reactions during bioleaching of chalcopyrite by different strains of moderately thermophilic bacteria (45 °C). Results show that monosulfide (CuS), disulfide (S22?), polysulfide (Sn2?), elemental sulfur (S0) and sulfate (SO42?) are the main intermediate species on the surface of chalcopyrite during bioleaching byA. caldus,S. thermosulfidooxidans andL. ferriphilum. The low kinetics of dissolution of chalcopyrite inA. caldus can be mainly attributed to the incomplete dissolution of chalcopyrite and the passivation layer of polysulfide. Polysulfide and jarosite should be mainly responsible for the passivation of chalcopyrite in bioleaching byL. ferriphilumorS. thermosulfidooxidans. However, elemental sulfur should not be the main composition of passivation layer of chalcopyrite during bioleaching.
基金Project(51274257) supported by the National Natural Science Foundation of ChinaProject(U1232103) supported by the Joint Funds of National Natural Science Foundation of China and Large Scientific Facility Foundation of Chinese Academy of Sciences+1 种基金Project(VR-12419) supported by the Beijing Synchrotron Radiation Facility Public User Program,ChinaProject(15ssrf00924) supported by the Shanghai Institute of Applied Physics Open Fund of Shanghai Synchrotron Radiation Facility,China
文摘The relatedness between catalytic effect of activated carbon and passivation phenomenon during chalcopyrite bioleachingby mixed thermophilic Archaea culture(Acidianus brierleyi,Metallosphaera sedula,Acidianus manzaensis and Sulfolobusmetallicus)at65°C was studied.Leaching experiments showed that the addition of activated carbon could significantly promote thedissolution of chalcopyrite for both bioleaching and chemical leaching.The results of synchrotron-based X-ray diffraction,ironL-edge and sulfur K-edge X-ray absorption near edge structure spectroscopy indicated that activated carbon could change thetransition path of electrons through galvanic interactions to form more readily dissolved secondary mineral chalcocite at a low redoxpotential(?400mV)and then enhanced the copper dissolution.Jarosite accumulated immediately in the initial stage of bioleachingwith activated carbon but copper dissolution was not hindered.However,much jarosite precipitated on the surface of chalcopyrite inthe late stage of bioleaching,which might account for the decrease of copper dissolution rate.More elemental sulfur(S0)was alsodetected with additional activated carbon but the mixed thermophilic Archaea culture had a great sulfur oxidation activity,thus S0waseliminated and seemed to have no significant influence on the dissolution of chalcopyrite.