Pure ZnO and Sn-doped ZnO thin films were successfully prepared by the spray pyrolysis method onto glass substrates. The obtained films were characterized by XRD (X-ray diffraction), SEM (scanning electron microsc...Pure ZnO and Sn-doped ZnO thin films were successfully prepared by the spray pyrolysis method onto glass substrates. The obtained films were characterized by XRD (X-ray diffraction), SEM (scanning electron microscopy) and ultraviolet-visible spectroscopy. The XRD results showed that the FWHM of Sn-doped ZnO film increased due to the substitution of Sn for Zn, the tin doping within the film causes the ZnO crystallinity to deteriorate. The grains of the film doped with Sn using dibutyltin diacetate were found to be non-uniform distribution through the sample but those appeared to form ganglia-like hills in the case of pure ZnO film. Furthermore, the Sn-doped ZnO films were tested with respect to the photocatalysis in aqueous solutions of MG (malachite green) upon UV-light illumination and in darkness. It was found that Sn-doped ZnO films prepared under specific conditions showed a lower photocatalytic activity than that of pure ZnO films.展开更多
This paper first reviews an EUV normal incidence solar telescope that we have developed in our lab. The telescope is composed of four EUV telescopes and the operation wavelengths are 13.0 nm, 17.1 nm, 19.5 nm, and 30....This paper first reviews an EUV normal incidence solar telescope that we have developed in our lab. The telescope is composed of four EUV telescopes and the operation wavelengths are 13.0 nm, 17.1 nm, 19.5 nm, and 30.4 nm. These four wavelengths, fundamental to the research of the solar activity and the atmosphere dynamics, are always chosen by the EUV normal incidence solar telescope. In the EUV region, almost all materials have strong absorption, so optics used in this region must be coated by the multilayer. The Mo/Si multilayers used for the EUV normal incidence solar telescope are designed and fabricated by the magnetron sputtering coating machine. The characteristics of these multilayers, such as reflectivity and thermal stability at wavelengths of 13.0 nm, 17.1 nm, 19.5 nm and 30.4 nm, are also described. All the multilayers were measured by a hard X-ray diffractometer (XRD) and an EUV/soft X-ray reflectometer (EXRR) before and after heating (in a vacuum chamber) at 100℃ for 24 hours and at 200℃ for 1 hour and 4 hours. The results show that Mo/Si multilayers have high reflectivity at 13.0 nm, 17.1 nm, and 19.5 nm but low at 30.4 nm. We found no change in the reflectivity and center wavelength of these multilayers by comparing the reflectivity curves before and after heating. This suggests the thermal stability of Mo/Si multilayers may meet our requirement in future solar observation missions.展开更多
文摘Pure ZnO and Sn-doped ZnO thin films were successfully prepared by the spray pyrolysis method onto glass substrates. The obtained films were characterized by XRD (X-ray diffraction), SEM (scanning electron microscopy) and ultraviolet-visible spectroscopy. The XRD results showed that the FWHM of Sn-doped ZnO film increased due to the substitution of Sn for Zn, the tin doping within the film causes the ZnO crystallinity to deteriorate. The grains of the film doped with Sn using dibutyltin diacetate were found to be non-uniform distribution through the sample but those appeared to form ganglia-like hills in the case of pure ZnO film. Furthermore, the Sn-doped ZnO films were tested with respect to the photocatalysis in aqueous solutions of MG (malachite green) upon UV-light illumination and in darkness. It was found that Sn-doped ZnO films prepared under specific conditions showed a lower photocatalytic activity than that of pure ZnO films.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40774098 and 10878004)
文摘This paper first reviews an EUV normal incidence solar telescope that we have developed in our lab. The telescope is composed of four EUV telescopes and the operation wavelengths are 13.0 nm, 17.1 nm, 19.5 nm, and 30.4 nm. These four wavelengths, fundamental to the research of the solar activity and the atmosphere dynamics, are always chosen by the EUV normal incidence solar telescope. In the EUV region, almost all materials have strong absorption, so optics used in this region must be coated by the multilayer. The Mo/Si multilayers used for the EUV normal incidence solar telescope are designed and fabricated by the magnetron sputtering coating machine. The characteristics of these multilayers, such as reflectivity and thermal stability at wavelengths of 13.0 nm, 17.1 nm, 19.5 nm and 30.4 nm, are also described. All the multilayers were measured by a hard X-ray diffractometer (XRD) and an EUV/soft X-ray reflectometer (EXRR) before and after heating (in a vacuum chamber) at 100℃ for 24 hours and at 200℃ for 1 hour and 4 hours. The results show that Mo/Si multilayers have high reflectivity at 13.0 nm, 17.1 nm, and 19.5 nm but low at 30.4 nm. We found no change in the reflectivity and center wavelength of these multilayers by comparing the reflectivity curves before and after heating. This suggests the thermal stability of Mo/Si multilayers may meet our requirement in future solar observation missions.