A potential 4.2 V cathode material LiVPO4F for lithium batteries was prepared by two-step reaction method based on a carbon-thermal reduction (CTR) process. Firstly, V2O5, NH4H2PO4 and acetylene black are reacted un...A potential 4.2 V cathode material LiVPO4F for lithium batteries was prepared by two-step reaction method based on a carbon-thermal reduction (CTR) process. Firstly, V2O5, NH4H2PO4 and acetylene black are reacted under an Ar atmosphere to yield VPO4. The transition-metal reduction is facilitated by the CTR based on C→CO transition. These CTR conditions favor stabilization of the vanadium as V^3+ as well as leaving residual carbon, which is useful in the subsequent electrode processing. Secondly, VPO4 reacts with ElF to yield LiVPO4F product. The property of the LiVPO4F was investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and electrochemical measurement. XRD studies show that LiVPO4F synthesized has triclinic structure(space group p I ), isostructural with the naturally occurring mineral tavorite, EiFePO4-OH. SEM image exhibits that the particle size is about 2μm together with homogenous distribution. Electrochemical test shows that the initial discharge capacity of LiVPO4F powder is 119 mA·h/g at the rate of 0.2C with an average discharge voltage of 4.2V (vs Ei/Li^+), and the capacity retains 89 mA·h/g after 30 cycles.展开更多
Nowadays,it is a matter of great concern to design electrode materials with excellent electrochemical performance for supercapacitors by a safe,efficient and simple method.And these characteristics are usually related...Nowadays,it is a matter of great concern to design electrode materials with excellent electrochemical performance for supercapacitors by a safe,efficient and simple method.And these characteristics are usually related to the vacancies and impurities in the electrode.To investigate the effect of the vacancies on the electrochemical properties of the supercapacitor cathode material,the uniform reduced CoNi2S4(r-CoNi2S4)nanosheets with sulfur vacancies have been successfully prepared by a one-step hydrothermal method.And the formation of sulfur vacancies are characterized by Raman,X-ray photoelectron spectroscopy and other means.As the electrode for supercapacitor,the r-CoNi2S4 nanosheet electrode delivers a high capacity of 1918.9 Fg-1 at a current density of 1 A g-1,superior rate capability(87.9%retention at a current density of 20 A g-1)and extraordinary cycling stability.Compared with the original CoNi2S4 nanosheet electrode(1226 F g-1at current density of 1 A g-1),the r-CoNi2S4 nanosheet electrode shows a great improvement.The asymmetric supercapacitor based on the r-CoNi2S4 positive electrode and activated carbon negative electrode exhibits a high energy density of 30.3 Wh kg-1 at a power density of 802.1 W kg-1,as well as excellent long-term cycling stability.The feasibility and great potential of the device in practical applications have been successfully proved by lightening the light emitting diodes of three different colors.展开更多
基金Project(50302016) supported by the National Natural Science Foundation of China
文摘A potential 4.2 V cathode material LiVPO4F for lithium batteries was prepared by two-step reaction method based on a carbon-thermal reduction (CTR) process. Firstly, V2O5, NH4H2PO4 and acetylene black are reacted under an Ar atmosphere to yield VPO4. The transition-metal reduction is facilitated by the CTR based on C→CO transition. These CTR conditions favor stabilization of the vanadium as V^3+ as well as leaving residual carbon, which is useful in the subsequent electrode processing. Secondly, VPO4 reacts with ElF to yield LiVPO4F product. The property of the LiVPO4F was investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and electrochemical measurement. XRD studies show that LiVPO4F synthesized has triclinic structure(space group p I ), isostructural with the naturally occurring mineral tavorite, EiFePO4-OH. SEM image exhibits that the particle size is about 2μm together with homogenous distribution. Electrochemical test shows that the initial discharge capacity of LiVPO4F powder is 119 mA·h/g at the rate of 0.2C with an average discharge voltage of 4.2V (vs Ei/Li^+), and the capacity retains 89 mA·h/g after 30 cycles.
基金supported by the National Natural Science Foundation of China(61376011 and 51402141)Gansu Provincial Natural Science Foundation(17JR5RA198)+1 种基金the Fundamental Research Funds for the Central Universities(lzujbky-2018-119 and lzujbky-2018-ct08)Shenzhen Science and Technology Innovation Committee(JCYJ20170818155813437)。
文摘Nowadays,it is a matter of great concern to design electrode materials with excellent electrochemical performance for supercapacitors by a safe,efficient and simple method.And these characteristics are usually related to the vacancies and impurities in the electrode.To investigate the effect of the vacancies on the electrochemical properties of the supercapacitor cathode material,the uniform reduced CoNi2S4(r-CoNi2S4)nanosheets with sulfur vacancies have been successfully prepared by a one-step hydrothermal method.And the formation of sulfur vacancies are characterized by Raman,X-ray photoelectron spectroscopy and other means.As the electrode for supercapacitor,the r-CoNi2S4 nanosheet electrode delivers a high capacity of 1918.9 Fg-1 at a current density of 1 A g-1,superior rate capability(87.9%retention at a current density of 20 A g-1)and extraordinary cycling stability.Compared with the original CoNi2S4 nanosheet electrode(1226 F g-1at current density of 1 A g-1),the r-CoNi2S4 nanosheet electrode shows a great improvement.The asymmetric supercapacitor based on the r-CoNi2S4 positive electrode and activated carbon negative electrode exhibits a high energy density of 30.3 Wh kg-1 at a power density of 802.1 W kg-1,as well as excellent long-term cycling stability.The feasibility and great potential of the device in practical applications have been successfully proved by lightening the light emitting diodes of three different colors.