Application of thermal electrochemical equation to metal-hydride half-cell system was investigated, and the influence of state of charge on the thermal electrochemical performance of hydrogen storage materials was stu...Application of thermal electrochemical equation to metal-hydride half-cell system was investigated, and the influence of state of charge on the thermal electrochemical performance of hydrogen storage materials was studied. The results show that both the absolute value of the molar enthalpy change and the internal resistance of evolution hydrogen reaction are less than that of absorption hydrogen reaction at the same state of charge. The molar reaction enthalpy change of absorption and evolution of hydride electrode change contrarily with the enhancement of filling degree of hydrogen in hydride electrode. The relation curve of molar reaction enthslpy change to state of charge, both absorption and evolution hydrogen reaction, is close to a constant when the state of charge is 10%- 60%, and during state of charge below 10% or state of charge above 60%, the molar reaction enthalpy change varies sharply. Meanwhile, the internal resistance of electrode reaction has an ascending trend with the enhancement on filling degree of hydrogen in hydride electrode in both absorption and evolution hydrogen reaction.展开更多
The paper compares clothing thermal resistance of the same ensemble tested by different thermal manikins in different laboratories. It also examines the consistence of the two groups of total thermal resistance by Pai...The paper compares clothing thermal resistance of the same ensemble tested by different thermal manikins in different laboratories. It also examines the consistence of the two groups of total thermal resistance by Paired-Sample T Test method, which proves that there is no remarkable difference in testing results under the same experiment method and requirement. It is of great significance in promoting the application of thermal manikin testing technology and academic exchange among different institutes.展开更多
The consumption ofthermoset resins as building polymers is approximately over one million tone word wide. The thermoset resins are proven construction materials for the technical and highly demanding applications of t...The consumption ofthermoset resins as building polymers is approximately over one million tone word wide. The thermoset resins are proven construction materials for the technical and highly demanding applications of the transportation, electrical and building part industry. Heat stability, high thermal, low shrinkage, excellent mechanical properties are typical for their type of polymers. Above applications in addition to the mechanical properties also require good flame retardants of the materials. Undertaken activities refer to official draft, laws and legal recommendations in UE states. This paper presents positive effect of reduced flammability of thermoset resins (unsaturated polyester and epoxy resins) thanks to the use of nanocomposites containing multi-ingredient halogen-flee flame retardants which combine conventional phosphorus/nitrogen modifiers interacting with nanofillers (oMMT (organomodified montmorillonite), EG (expandable graphite), graphene, GO (graphene oxide), nSi (nanosilica)).展开更多
Polymer nanocomposites are a new class of flame retarded materials which have attracted much attention and considered as a revolutionary new flame retardant approach.A very small amount of nano flame retardants (norma...Polymer nanocomposites are a new class of flame retarded materials which have attracted much attention and considered as a revolutionary new flame retardant approach.A very small amount of nano flame retardants (normally < 5 wt%) can significantly reduce the heat release rate (HRR) and smoke emission (SEA) during the combustion of polymer materials.Moreover,the addition of nano flame retardants can also improve the mechanical properties of polymer materials compared with the deterioration of traditional flame retardants.This paper reviews the recent development in the flame retardant field of polymer nanocomposites and also introduces the related research in our lab.The challenges and problems are discussed and the future development of flame retarded polymer nanocomposites is prospected.展开更多
Hydrothermal carbon (HTC) is typically well- dispersed, but it remains a great challenge for HTC to become conductive. Co-doping with heteroatoms has been confirmed to be an effective strategy to significantly promo...Hydrothermal carbon (HTC) is typically well- dispersed, but it remains a great challenge for HTC to become conductive. Co-doping with heteroatoms has been confirmed to be an effective strategy to significantly promote the electrical conductivity of carbon. Moreover, there is no simple and green method to construct sensitive HTC based electro- chemical biosensors until now. In this paper, N and S dual-doped carbon (NS-C) with ultra-low charge transfer resistance is easily synthesized from L-cysteine and glucose in a hydrothermal reaction system. The morphology, structural prop- erties and electrochemical properties of the as-prepared NS-C are analyzed. In comparison with the undoped hydrothermal (UC) modified glassy carbon electrode (GCE), the charge transfer resistance of UC (476 Ω) is ten times the value of NS- C (46 Ω). The developed biosensor shows a better performance to detect glucose in a wide concentration range (50-2500 μmol L^-1) with the detection limit of 1.77 μmol L^-1 (S/N-3) and a high sensitivity (0.0554 μA cm^-2μmol^-1 L). The apparent Michaelis-Menten constant value of GCE/NS-C/GOx/nafion modified electrode is 0.769 mmol L^-1, indicating a high affinity of glucose oxidase to glucose. These results demonstrate that the hydrothermal method is an effective way for prepar- ing high electrical conductivity carbon with excellent performances in biosensor application.展开更多
基金Project(2001AA501433) supported by the National High Technology Research and Development Programof China
文摘Application of thermal electrochemical equation to metal-hydride half-cell system was investigated, and the influence of state of charge on the thermal electrochemical performance of hydrogen storage materials was studied. The results show that both the absolute value of the molar enthalpy change and the internal resistance of evolution hydrogen reaction are less than that of absorption hydrogen reaction at the same state of charge. The molar reaction enthalpy change of absorption and evolution of hydride electrode change contrarily with the enhancement of filling degree of hydrogen in hydride electrode. The relation curve of molar reaction enthslpy change to state of charge, both absorption and evolution hydrogen reaction, is close to a constant when the state of charge is 10%- 60%, and during state of charge below 10% or state of charge above 60%, the molar reaction enthalpy change varies sharply. Meanwhile, the internal resistance of electrode reaction has an ascending trend with the enhancement on filling degree of hydrogen in hydride electrode in both absorption and evolution hydrogen reaction.
文摘The paper compares clothing thermal resistance of the same ensemble tested by different thermal manikins in different laboratories. It also examines the consistence of the two groups of total thermal resistance by Paired-Sample T Test method, which proves that there is no remarkable difference in testing results under the same experiment method and requirement. It is of great significance in promoting the application of thermal manikin testing technology and academic exchange among different institutes.
文摘The consumption ofthermoset resins as building polymers is approximately over one million tone word wide. The thermoset resins are proven construction materials for the technical and highly demanding applications of the transportation, electrical and building part industry. Heat stability, high thermal, low shrinkage, excellent mechanical properties are typical for their type of polymers. Above applications in addition to the mechanical properties also require good flame retardants of the materials. Undertaken activities refer to official draft, laws and legal recommendations in UE states. This paper presents positive effect of reduced flammability of thermoset resins (unsaturated polyester and epoxy resins) thanks to the use of nanocomposites containing multi-ingredient halogen-flee flame retardants which combine conventional phosphorus/nitrogen modifiers interacting with nanofillers (oMMT (organomodified montmorillonite), EG (expandable graphite), graphene, GO (graphene oxide), nSi (nanosilica)).
基金financially supported by the National Natural Science Foundation of China (50873092 and 51073140)
文摘Polymer nanocomposites are a new class of flame retarded materials which have attracted much attention and considered as a revolutionary new flame retardant approach.A very small amount of nano flame retardants (normally < 5 wt%) can significantly reduce the heat release rate (HRR) and smoke emission (SEA) during the combustion of polymer materials.Moreover,the addition of nano flame retardants can also improve the mechanical properties of polymer materials compared with the deterioration of traditional flame retardants.This paper reviews the recent development in the flame retardant field of polymer nanocomposites and also introduces the related research in our lab.The challenges and problems are discussed and the future development of flame retarded polymer nanocomposites is prospected.
基金supported by the National Basic Research Program of China (973 Program,2014CB931900)UCAS Young Teacher Research Fund (Y55103NY00,Y55103EY00,and Y25102TN00)+1 种基金Beijing Natural Science Foundation (Z160002)The Chinese Academy of Sciences Key Project Foundation (KFZD-SW-202)
文摘Hydrothermal carbon (HTC) is typically well- dispersed, but it remains a great challenge for HTC to become conductive. Co-doping with heteroatoms has been confirmed to be an effective strategy to significantly promote the electrical conductivity of carbon. Moreover, there is no simple and green method to construct sensitive HTC based electro- chemical biosensors until now. In this paper, N and S dual-doped carbon (NS-C) with ultra-low charge transfer resistance is easily synthesized from L-cysteine and glucose in a hydrothermal reaction system. The morphology, structural prop- erties and electrochemical properties of the as-prepared NS-C are analyzed. In comparison with the undoped hydrothermal (UC) modified glassy carbon electrode (GCE), the charge transfer resistance of UC (476 Ω) is ten times the value of NS- C (46 Ω). The developed biosensor shows a better performance to detect glucose in a wide concentration range (50-2500 μmol L^-1) with the detection limit of 1.77 μmol L^-1 (S/N-3) and a high sensitivity (0.0554 μA cm^-2μmol^-1 L). The apparent Michaelis-Menten constant value of GCE/NS-C/GOx/nafion modified electrode is 0.769 mmol L^-1, indicating a high affinity of glucose oxidase to glucose. These results demonstrate that the hydrothermal method is an effective way for prepar- ing high electrical conductivity carbon with excellent performances in biosensor application.