The deformation behavior of hot isostatic pressing (HIP) FGH96 superalloy was characterized in the temperature range of 1000-1100 ℃ and strain rate range of 0. 001-0. 1 s^-1 using hot compression testing. The flow ...The deformation behavior of hot isostatic pressing (HIP) FGH96 superalloy was characterized in the temperature range of 1000-1100 ℃ and strain rate range of 0. 001-0. 1 s^-1 using hot compression testing. The flow curves of HIP FGH96, superalloy during hot deformation was analyzed systematically. The results show that deformation temperature, strain rate and strain are the main influence factors on flow stress of HIP FGH96 superalloy during hot deformation. The flow stress displays a peak at a critical strain and then decreases with further increase in strain. For a given strain, the flow stress decreases with the increase of deformation temperature, and increases with the increase of strain rate. A mathematical model of these flow curves was established through regression analysis and taking the strain as a modification factor. The calculated stress values agree well with the experimental values.展开更多
The hot isostatic pressing-diffusion bonding(HIP-DB)was proposed to achieve the joining of CuAgZn and GH909 directly without an interlayer.The microstructure of joint was characterized by scanning electron microscope(...The hot isostatic pressing-diffusion bonding(HIP-DB)was proposed to achieve the joining of CuAgZn and GH909 directly without an interlayer.The microstructure of joint was characterized by scanning electron microscope(SEM),energy dispersive spectrometer(EDS)and X-ray diffraction(XRD).The microhardness and shear strength were tested to investigate the mechanical properties of joint.The results showed that the interface was complete,and the joint was compact,uniform and free of unbonded defects.The maximum microhardness of joint was HV 443,higher than that of two base alloys,and the average shear strength of joint reached 172 MPa.It is concluded that a good metallurgical bonding between CuAgZn and GH909 can be obtained by HIP-DB with the process parameters of 700℃,150 MPa and 3 h.展开更多
A1203/5%SIC nanocomposites were fabricated by pressureless sintering using MgO as a sintering aid and then post hot-isostatic pressed (HIP), which can subsequently break through the disadvantage of hot-pressing proc...A1203/5%SIC nanocomposites were fabricated by pressureless sintering using MgO as a sintering aid and then post hot-isostatic pressed (HIP), which can subsequently break through the disadvantage of hot-pressing process. The MgO additive was able to promote the densification of the composites, but could not induce the grain growth of A1203 matrix due to the grain growth inhibition by nano-sized SiC particles. After HIP treatment, A12OJSiC nanocomposites achieved full densification and homogeneous distribution of nano-sized SiC particles. Moreover, the fracture morphology of HIP treated specimens was identical with that of the hot-pressed A1203/SiC nanocomposites showing complete transgranular fracture. Consequently, high fracture strength of 1 GPa was achieved for the A1203/5%SIC nanocomposites by pressureless sintering and post HIP process.展开更多
To investigate the effects of pressure on the hot isostatic pressing(HIP) process of a stainless steel powder,density distribution and deformation of the powder at four different applied pressure levels were predicted...To investigate the effects of pressure on the hot isostatic pressing(HIP) process of a stainless steel powder,density distribution and deformation of the powder at four different applied pressure levels were predicted and compared by using finite element method(FEM).Constitutive relations of porous compacts during HIP process were derived based on the yield criterion of porous metal materials.Thermo-mechanical coupling calculations were carried out by the MSC.Marc.Densification mechanisms were studied through evolutions of relative density,equivalent plastic strain and equivalent viscoplastic strain rate for compacts.The simulation results were also compared with experimental data.The results show that the densification rate and final density of compacts increase dramatically with the increase in the applied pressure level when it is below 100 MPa during HIP process,and the creep for compacts evolves into steady stage with the improvement of density.展开更多
The Ti−6Al−4V(TC4)alloy powder and forged solid were diffusion bonded by hot isostatic pressing(HIP)to fabricate a powder−solid part.The microstructure of the powder−solid part was observed by scanning electron micros...The Ti−6Al−4V(TC4)alloy powder and forged solid were diffusion bonded by hot isostatic pressing(HIP)to fabricate a powder−solid part.The microstructure of the powder−solid part was observed by scanning electron microscope(SEM).The microhardness and tensile tests were conducted to investigate the mechanical properties.The results showed that the powder compact was near-fully dense,and the powder/solid interface was tight and complete.The microhardness of the interface was higher than that of the powder compact and solid.The fractures of all powder−solid tensile specimens were on the solid side rather than at the interface,which indicated that a good interfacial strength was obtained.The tensile strength and elongation of the powder compact were higher than those of the solid.It is concluded that the HIP process can successfully fabricate high-quality Ti−6Al−4V powder−solid parts,which provides a novel near net shape technology for titanium alloys.展开更多
Pure hydroxyapatite(HAP)ceramic and HAP composite ceramic with B2O3 were prepared by isostatic press forming and pressureless sintering.The relationships between thermal decomposition ratio and mechanical properties...Pure hydroxyapatite(HAP)ceramic and HAP composite ceramic with B2O3 were prepared by isostatic press forming and pressureless sintering.The relationships between thermal decomposition ratio and mechanical properties for pure HAP ceramic and the composite ceramic were investigated by means of FTIR,X-ray diffraction and three-point bending method.The results indicate that the decomposition ratio of pure HAP ceramic increases with ascending the sintering temperature and nearly reaches 80%at 1 350?殆or the HAP composite ceramic,the thermal decomposition is inhibited obviously due to the addition of B2O3.The added B atoms incorporate into the crystal lattice of HAP to form solid solution,resulting in an enlargement in the crystal spacing and an improvement in the binding strength of HAP crystal cell.Thermal decomposition ratio of HAP decreases but bending strength and fracture toughness are enhanced for HAP composite ceramics.However,when the added B2O3 is more than 5%(mass fraction),HAP decomposition is promoted and a steady?-TCP is formed due to the fact that when B atoms with higher negative electricity are combined with O,sp2 and a full-air p are formed,and those voids have a strong trend to intake of the outer electrons.So,it is very possible to occupy the place where HAP loses OH - or PO4 3- .展开更多
The solid-state magnetic cooling(MC)method based on the magnetocaloric effect(MCE)is recognized as an environmentally friendly and high-energy-efficiency technology.The search or design of suitable magnetic materials ...The solid-state magnetic cooling(MC)method based on the magnetocaloric effect(MCE)is recognized as an environmentally friendly and high-energy-efficiency technology.The search or design of suitable magnetic materials with large MCEs is one of the main targets at present.In this work,we apply the chemical and hydrostatic pressures in the Ni_(35)Co_(15)Mn_(35-x)Fe_(x)Ti_(15) all-d-metal Heusler alloys and systematically investigate their crystal structures,phases,and magnetocaloric performances experimentally and theoretically.All the alloys are found to crystallize in an ordered B2-type structure at room temperature and the atoms of Fe are confirmed to all occupy at sites Mn(B).The total magnetic moments decrease gradually with increasing Fe content and decreasing of volume as well.The martensitic transformation temperature decreases with the increase of Fe content,whereas increases with increasing hydrostatic pressure.Moreover,obviously enhanced magnetocaloric performances can also be obtained by applied pressures.The maximum values of magnetic entropy change and refrigeration capacity are as high as 15.61(24.20)J(kg K)^(−1) and 109.91(347.26)J kg^(−1) withΔH=20(50)kOe,respectively.These magnetocaloric performances are superior to most of the recently reported famous materials,indicating the potential application for active MC.展开更多
Ti-25Ta alloy samples were fabricated by selective laser melting,and the relative density,microstructure,microhardness and tensile properties of the as-built and hot isostatic pressing(HIP)-prepared samples were chara...Ti-25Ta alloy samples were fabricated by selective laser melting,and the relative density,microstructure,microhardness and tensile properties of the as-built and hot isostatic pressing(HIP)-prepared samples were characterized.Results show that the track width and penetration depth are increased with the increase in laser power,and the surface morphology is improved.The maximum relative density improves from 95.31%to 98.01%after HIP process.Moreover,the microstructure is refined into the lath martensite and cellular grains with the increase in input power.After densification treatment,the subgrain coalescence occurs and high angle grain boundaries are formed.In addition,HIP process stabilizes the microhardness and enhances the tensile strength and elongation.展开更多
基金Supported by Young Teacher Foundation of Tianjin University (5110105) and Aeronautic Science Foundation (03H53048).
文摘The deformation behavior of hot isostatic pressing (HIP) FGH96 superalloy was characterized in the temperature range of 1000-1100 ℃ and strain rate range of 0. 001-0. 1 s^-1 using hot compression testing. The flow curves of HIP FGH96, superalloy during hot deformation was analyzed systematically. The results show that deformation temperature, strain rate and strain are the main influence factors on flow stress of HIP FGH96 superalloy during hot deformation. The flow stress displays a peak at a critical strain and then decreases with further increase in strain. For a given strain, the flow stress decreases with the increase of deformation temperature, and increases with the increase of strain rate. A mathematical model of these flow curves was established through regression analysis and taking the strain as a modification factor. The calculated stress values agree well with the experimental values.
基金The authors are grateful for the financial support from the Advanced Space Propulsion Technology Laboratory Open Fund,China(LabASP-2018-16).
文摘The hot isostatic pressing-diffusion bonding(HIP-DB)was proposed to achieve the joining of CuAgZn and GH909 directly without an interlayer.The microstructure of joint was characterized by scanning electron microscope(SEM),energy dispersive spectrometer(EDS)and X-ray diffraction(XRD).The microhardness and shear strength were tested to investigate the mechanical properties of joint.The results showed that the interface was complete,and the joint was compact,uniform and free of unbonded defects.The maximum microhardness of joint was HV 443,higher than that of two base alloys,and the average shear strength of joint reached 172 MPa.It is concluded that a good metallurgical bonding between CuAgZn and GH909 can be obtained by HIP-DB with the process parameters of 700℃,150 MPa and 3 h.
基金Project supported by Pusan National University Research GrantProject(2010-0008-276) supported by National Core Research Center Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology
文摘A1203/5%SIC nanocomposites were fabricated by pressureless sintering using MgO as a sintering aid and then post hot-isostatic pressed (HIP), which can subsequently break through the disadvantage of hot-pressing process. The MgO additive was able to promote the densification of the composites, but could not induce the grain growth of A1203 matrix due to the grain growth inhibition by nano-sized SiC particles. After HIP treatment, A12OJSiC nanocomposites achieved full densification and homogeneous distribution of nano-sized SiC particles. Moreover, the fracture morphology of HIP treated specimens was identical with that of the hot-pressed A1203/SiC nanocomposites showing complete transgranular fracture. Consequently, high fracture strength of 1 GPa was achieved for the A1203/5%SIC nanocomposites by pressureless sintering and post HIP process.
基金Project(2007AA03Z115) supported by the National High Technology Research and Development Program of ChinaProject(2009ZX04005-041-03) supported by the National Science and Technology Major Program of ChinaProject(2010MS046) supported by the Independent Fund of Huazhong University of Science and Technology,China
文摘To investigate the effects of pressure on the hot isostatic pressing(HIP) process of a stainless steel powder,density distribution and deformation of the powder at four different applied pressure levels were predicted and compared by using finite element method(FEM).Constitutive relations of porous compacts during HIP process were derived based on the yield criterion of porous metal materials.Thermo-mechanical coupling calculations were carried out by the MSC.Marc.Densification mechanisms were studied through evolutions of relative density,equivalent plastic strain and equivalent viscoplastic strain rate for compacts.The simulation results were also compared with experimental data.The results show that the densification rate and final density of compacts increase dramatically with the increase in the applied pressure level when it is below 100 MPa during HIP process,and the creep for compacts evolves into steady stage with the improvement of density.
基金the National Natural Science Foundation of China(No.51675029).
文摘The Ti−6Al−4V(TC4)alloy powder and forged solid were diffusion bonded by hot isostatic pressing(HIP)to fabricate a powder−solid part.The microstructure of the powder−solid part was observed by scanning electron microscope(SEM).The microhardness and tensile tests were conducted to investigate the mechanical properties.The results showed that the powder compact was near-fully dense,and the powder/solid interface was tight and complete.The microhardness of the interface was higher than that of the powder compact and solid.The fractures of all powder−solid tensile specimens were on the solid side rather than at the interface,which indicated that a good interfacial strength was obtained.The tensile strength and elongation of the powder compact were higher than those of the solid.It is concluded that the HIP process can successfully fabricate high-quality Ti−6Al−4V powder−solid parts,which provides a novel near net shape technology for titanium alloys.
文摘Pure hydroxyapatite(HAP)ceramic and HAP composite ceramic with B2O3 were prepared by isostatic press forming and pressureless sintering.The relationships between thermal decomposition ratio and mechanical properties for pure HAP ceramic and the composite ceramic were investigated by means of FTIR,X-ray diffraction and three-point bending method.The results indicate that the decomposition ratio of pure HAP ceramic increases with ascending the sintering temperature and nearly reaches 80%at 1 350?殆or the HAP composite ceramic,the thermal decomposition is inhibited obviously due to the addition of B2O3.The added B atoms incorporate into the crystal lattice of HAP to form solid solution,resulting in an enlargement in the crystal spacing and an improvement in the binding strength of HAP crystal cell.Thermal decomposition ratio of HAP decreases but bending strength and fracture toughness are enhanced for HAP composite ceramics.However,when the added B2O3 is more than 5%(mass fraction),HAP decomposition is promoted and a steady?-TCP is formed due to the fact that when B atoms with higher negative electricity are combined with O,sp2 and a full-air p are formed,and those voids have a strong trend to intake of the outer electrons.So,it is very possible to occupy the place where HAP loses OH - or PO4 3- .
基金supported by the National Natural Science Foundation of China(52001102 and 91963123)the Ten Thousand Talents Plan of Zhejiang Province of China(2018R52003)the Fundamental Research Funds for the Provincial University of Zhejiang(GK199900299012-022)。
文摘The solid-state magnetic cooling(MC)method based on the magnetocaloric effect(MCE)is recognized as an environmentally friendly and high-energy-efficiency technology.The search or design of suitable magnetic materials with large MCEs is one of the main targets at present.In this work,we apply the chemical and hydrostatic pressures in the Ni_(35)Co_(15)Mn_(35-x)Fe_(x)Ti_(15) all-d-metal Heusler alloys and systematically investigate their crystal structures,phases,and magnetocaloric performances experimentally and theoretically.All the alloys are found to crystallize in an ordered B2-type structure at room temperature and the atoms of Fe are confirmed to all occupy at sites Mn(B).The total magnetic moments decrease gradually with increasing Fe content and decreasing of volume as well.The martensitic transformation temperature decreases with the increase of Fe content,whereas increases with increasing hydrostatic pressure.Moreover,obviously enhanced magnetocaloric performances can also be obtained by applied pressures.The maximum values of magnetic entropy change and refrigeration capacity are as high as 15.61(24.20)J(kg K)^(−1) and 109.91(347.26)J kg^(−1) withΔH=20(50)kOe,respectively.These magnetocaloric performances are superior to most of the recently reported famous materials,indicating the potential application for active MC.
基金Key Realm R&D Program of Guangdong Province(2018B090904004)Supported by State Key Laboratory of Advanced Metals and Materials(2022-Z16)+3 种基金Key Research Program of Guangzhou(202206040001)International Science and Technology Cooperation Program of Guangdong Province(2022A0505050025)Guangdong Academy of Science Project of Science and Technology Development(2020GDASYL-20200504001,2022GDASZH-2022010107,2022GDASZH-2022010109)National Key Research and Development Project(2022YFC2406000)。
文摘Ti-25Ta alloy samples were fabricated by selective laser melting,and the relative density,microstructure,microhardness and tensile properties of the as-built and hot isostatic pressing(HIP)-prepared samples were characterized.Results show that the track width and penetration depth are increased with the increase in laser power,and the surface morphology is improved.The maximum relative density improves from 95.31%to 98.01%after HIP process.Moreover,the microstructure is refined into the lath martensite and cellular grains with the increase in input power.After densification treatment,the subgrain coalescence occurs and high angle grain boundaries are formed.In addition,HIP process stabilizes the microhardness and enhances the tensile strength and elongation.