The effect of heat treatment on microstructure and mechanical properties of the Ti-steel explosive-rolling clad plate was elaborated by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffracti...The effect of heat treatment on microstructure and mechanical properties of the Ti-steel explosive-rolling clad plate was elaborated by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), micro-hardness test and shear test. The composites were subjected to heat treatment at temperature of 650-950 ~C for 60 min. The results show that the heat treatment process results in a great enhancement of diffusion and microstructural transformation. The shear strength decreases as the treatment temperature increases. Heated at 850 ℃ or below, their shear strength decreases slowly as a result of the formation of TiC in the diffusion interaction layer; while at the temperature of 850 ℃ or above, the shear strength decreases obviously, which is the consequence of a large amount of Ti-Fe intermetaUics (Fe2Ti/FeTi) along with some TiC distributing continuously at diffusion reaction layer.展开更多
The dissolution of a carbonatitic chalcopyrite(CuFeS2)was studied in H_(2)SO_(4)−Fe_(2)(SO_(4))_(3)−FeSO_(4)−H_(2)O at varying pH values(0.5−2.5)and 25℃ for 12 h.Experiments were conducted with a size fraction of 53...The dissolution of a carbonatitic chalcopyrite(CuFeS2)was studied in H_(2)SO_(4)−Fe_(2)(SO_(4))_(3)−FeSO_(4)−H_(2)O at varying pH values(0.5−2.5)and 25℃ for 12 h.Experiments were conducted with a size fraction of 53−75μm.Low Cu recoveries,below 15%,were observed in all pH regimes.The results from the XRD,SEM−EDS,and optical microscopic(OM)analyses of the residues indicated that the dissolution proceeded through the formation of transient phases.Cu_(3.39)Fe_(0.61)S_(4) and Cu_(2)S were the intermediate phases at pH 0.5 and 1.0,respectively,whereas Cu_(5)FeS_(4) was the major mineral at pH 1.5 and 1.8.The thermodynamic modelling predicted the sequential formation of CuFeS_(2)→Cu_(5)FeS_(4)→Cu_(2)S→CuS.The soluble intermediates were Cu_(5)FeS_(4) and Cu2S,whilst,CuS and Cu_(3.39)Fe_(0.61)S_(4) were the refractory phases,supporting their cumulating behaviour throughout the dissolution.The obtained results suggest that the formation of CuS and Cu_(3.39)Fe_(0.61)S_(4) could contribute to the passive film formed during CuFeS_(2) leaching.展开更多
The distribution and characteristics of nonmetallic micro-inclusions of GCr15 bearing steel were explored through metallographic area method in virtue of tracer method and electronic microscope.The results show that t...The distribution and characteristics of nonmetallic micro-inclusions of GCr15 bearing steel were explored through metallographic area method in virtue of tracer method and electronic microscope.The results show that the micro-inclusions,of which the average value is 0.032%,are mainly the compounds formed via the adsorption/aggregation of multielement deoxidized compounds and secondarily deoxidized products on tundish liquid level.The micro-inclusions of diameters from 0 to 5 μm are 92.5% in total,which basically determines the characteristics of inclusions distribution in casting slab.The inclusions of diameters more than 10 μm only account for less than 1% in total,which have little influence on steel quality.The relationship between equilibrium compositions of the first deoxidation products and molten steel compositions was also calculated based on thermodynamic theory.展开更多
The effect of rolling to a total effective strain of 2 at the liquid nitrogen temperature and subsequent natural and artificial aging on the structure and service properties of the pre-quenched hot-pressed 2024 alumin...The effect of rolling to a total effective strain of 2 at the liquid nitrogen temperature and subsequent natural and artificial aging on the structure and service properties of the pre-quenched hot-pressed 2024 aluminum alloy was investigated.Using optical and electron microscopy,and X-ray analysis,it was found that the cryorolling did not qualitatively change the type of the initial coarse-fibered microstructure,but produced a well-developed nanocell substructure inside fibers.Further aging led to decomposition of the preliminary supersaturated and work-hardened aluminum solid solution and precipitation of strengthening phases in the statically recovered and/or recrystallized matrix.As a result,the rolled and naturally aged alloy demonstrated the yield and ultimate tensile strengths(YS=590 MPa,UTS=640 MPа)much higher than those in the pressed andТ6-heat treated alloy at equal elongation to failure(El^6%).Artificial aging at a temperature less than conventional T6 route could provide the extra alloy strengthening and the unique balance of mechanical properties,involving enhanced strength(YS=610 MPa,UTS=665 MPа)and ductility(El^10%),and good static crack resistance(the specific works for crack formation and growth were 42 and 18 k J/m^2,respectively)and corrosion resistance(the intensity and depth of intercrystalline corrosion were 23%and 50μm,respectively).展开更多
Thermodynamic equilibrium calculations were performed to reveal effects of interactions among Cl, S, P and other minerals on Cu migration. Our results showed that HCl(g), SO2(g) and (P2O5)2(g) were released fr...Thermodynamic equilibrium calculations were performed to reveal effects of interactions among Cl, S, P and other minerals on Cu migration. Our results showed that HCl(g), SO2(g) and (P2O5)2(g) were released from the sewage sludge co-incineration. Cl was found to weaken adsorption of Cu by Al2O3, CaO and Fe2O3, while S de- layed reactions of Fe2O3 and Al2O3 with Cu, with P having no effect on reactions between the minerals and Cu. Among the coupled systems ofCl, S and P, the co-existences of Cl and S, and Cl, S and P were determined to inhibit Cu volatilization, and the co-existence of Cl and P had an enhancing effect Cu migration was affected only by S in the S and P system. With the SiO2, CaO and Al2O3 system, both Cl alone and Cl and P led to failed reactions be- tween the minerals and Cu. In the systems of S, S and Cl, S and P, and S, Cl and P, the migration behavior of Cu was mainly affected by S at low temperatures and by Cl at high temperatures, whereas P had no effect on Cu mi- gration during the entire nrocess.展开更多
Cloud point (CP) determinations of 4-(1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol (TX-100 (nonionic surfactant)) was carried out in aqueous as well as in the attendance of drug (ceftriaxone sodium tri...Cloud point (CP) determinations of 4-(1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol (TX-100 (nonionic surfactant)) was carried out in aqueous as well as in the attendance of drug (ceftriaxone sodium trihydrate (CFT))/(CFT + different inorganic salts) and discussed thoroughly. Nonionic surfactants are employed exten- sively in different formulations. In aqueous solution, the values of CP of TX-100 are obtained to increase by means of enhancing of their concentration in the solution. The CP values of TX-100 solutions were found to de- crease in the presence of drug and their values decrease more with rising concentrations of the drug. The values of CP of CFT and TX-100 mixtures were found to further decrease in the attendance of inorganic salts in compar- ison to their absence. The effect of different sodium salts in decreasing CP values of TX-100 was achieved in the following order: NaCO3 〉 Na2SO4 〉 NaCl. However, in the case of potassium and ammonium salts, the decreasing order obtained is K2SO4 〉 KCO3 〉 KCI and (NH4)2SO4 〉 Na2CO3 〉 NH4Cl respectively. Various thermodynamic pa- rameters for example standard free energy (△G c), standard enthalpy (△H c) as well as standard entropy (△S c) changes of phase separation were also evaluated and discussed in detail on the basis of their behavior.展开更多
The dynamic mechanical properties of rock specimens after thermal treatment in the air-filled environment(AE:i.e.,at the free surface)have been extensively investigated,yet they are rarely estimated in the quasi-vacuu...The dynamic mechanical properties of rock specimens after thermal treatment in the air-filled environment(AE:i.e.,at the free surface)have been extensively investigated,yet they are rarely estimated in the quasi-vacuum environment(VE:i.e.,far from free surface),which is of special importance in engineering practice.Several precise laboratory tests(i.e.,split Hopkinson pressure bar test)on marble samples in both AE and VE were performed to investigate physical and dynamic mechanical behaviors of marble after heat treatment(25℃ to 900℃)in AE and VE.The tests results demonstrate that related properties of marble could be divided into three different stages by corresponding critical temperatures of 300℃ and 600℃,at which heat damage factors are 0.29(0.30)and 0.88(0.92)in VE(AE),respectively.The thermal damage developes more fully in AE than in VE.The thermal environment plays an important role,especially in Stage 3.Specifically,a conspicuous difference(greater than 20%)between AE and VE occurs in corresponding dynamic strength and the anti-deformation capacities of tested marble specimen.The influence of heat damage of rock is very important and valuable in engineering practice,particularly when the temperature is very high(greater than 600℃).展开更多
The glass formation was intensively studied for Fe-based alloys. Parameters defining kinetics and thermodynamic behavior of crystallization were calculated using calorimetric measurements and physical properties of co...The glass formation was intensively studied for Fe-based alloys. Parameters defining kinetics and thermodynamic behavior of crystallization were calculated using calorimetric measurements and physical properties of constituent elements. It is found that the critical cooling rate Rc estimated by combining kinetic and thermodynamic parameters highly correlates with measured Rc found in literatures with correlation coefficient R2=0.944, and alloy compositions with high melting enthalpy AHm can easily form glass even without high undercooling and high value of the ,β-parameter of Tumbull's theory, revealing that the glass formation in this group of alloys is mostly controlled by growth limitation. This combination of kinetic and thermodynamic parameters can be used to determine alloy composition with good glass forming ability in Fe-based alloys just using physical properties of alloying elements and calorimetric measurements.展开更多
The pyrolysis behaviors of corn stalk(CS) and pine sawdust(PS) were investigated with thermogravimetry-mass spectroscopy(TG-MS).The peak temperature of PS was higher and the main decomposition region shifted to higher...The pyrolysis behaviors of corn stalk(CS) and pine sawdust(PS) were investigated with thermogravimetry-mass spectroscopy(TG-MS).The peak temperature of PS was higher and the main decomposition region shifted to higher temperature compared with CS,which implied that the hemicellulose and cellulose of PS were more thermally stable than those of CS.However,the hemicellulose and cellulose of PS were more easily decomposed into gaseous products than those of CS during pyrolysis.The pyrolysis process of biomass can be described by a two-step independent first-order kinetic model.This fundamental study provides a basic insight into the biomass pyrolysis,which is beneficial for understanding the pyrolysis mechanism of biomass and developing an advanced thermal process for effective utilization of biomass.展开更多
Aim To simulate the thermal cyclic effects of metal matrix compeithe. Methods Based on Eshelby′s inclusion theory, a constitutive model for metal matrix composites and an elastic constraint method were formulated to ...Aim To simulate the thermal cyclic effects of metal matrix compeithe. Methods Based on Eshelby′s inclusion theory, a constitutive model for metal matrix composites and an elastic constraint method were formulated to predict the cyclic isothermal and cyclic thermomechanical behaviors of metal matrix composites. Results and Conclusion A SiC reinforced A1 2xxx-T4 composite was studied theoretically with the model. With the constitutive relation of the matrix, the mechanical behaviors of the composite under different loading condition, such as different loading rates, mechanical and thermal mechanical cyclic loading, can be quantitatively predicted. The thermal ratchetting effect of the composite can be predicted by the model.展开更多
The bench-scale cooling crystallization for ternary solution of L-ascorbic acid (Vitamin C) was studied.The solid-liquid phase diagram of Vitamin C-water-ethanol system was obtained on the basis of differential scanni...The bench-scale cooling crystallization for ternary solution of L-ascorbic acid (Vitamin C) was studied.The solid-liquid phase diagram of Vitamin C-water-ethanol system was obtained on the basis of differential scanning calorimeter (DSC) curves. The heat of crystallization of Vitamin C was calculated with the aid of quantitative analysis. According to the population balance equation under unsteady state, the rates of nucleation and growth were determined. The parameters of crystallization kinetics equations were estimated by regression of experimental data. Crystal morphology and size were determined with x-ray diffraction and TA Ⅱ Coulter Counter.展开更多
Thermal decomposition of polylactic acid (PLA) was studied in the presence of pine wood sawdust (PS), walnut shell (WS), corncob (CC) in order to understand the pyrolytic behavior of these components occurring...Thermal decomposition of polylactic acid (PLA) was studied in the presence of pine wood sawdust (PS), walnut shell (WS), corncob (CC) in order to understand the pyrolytic behavior of these components occurring in waste. A thermogravimetric analyzer (TGA) was applied for monitoring the mass loss profiles under heating rate of 10℃·min^-1. Results obtained from this comprehensive investigation indicated that PLA was decomposed in the temperature range 300 -372℃, whereas the thermal degradation temperature of biomass is 183-462℃. The difference of mass loss (AW) between experimental and theoretical ones, calculated as algebraic sums of those from each separated component, is about 17%-46% at 300-400℃. These experimental results indicated a significant synergistic effect during PLA and biomass copyrolysis. Moreover, a kinetic analysis was performed to fit thermogravimetric data, the global processes being considered as one to two consecutive reactions. A reasonable fit to the experimental data was obtained for all materials and their blends.展开更多
Rectisol process is more efficient in comparison with other physical or chemical absorption methods for gas purification. To implement a real time simulation of Rectisol process, thermodynamic model and simulation str...Rectisol process is more efficient in comparison with other physical or chemical absorption methods for gas purification. To implement a real time simulation of Rectisol process, thermodynamic model and simulation strategy are needed. In this paper, a method of modified statistical associated fluid theory with perturbation theory is used to predict thermodynamic behavior of process. As Rectisol process is a highly heat-integrated process with many loops, a method of equation oriented strategy, sequential quadratic programming, is used as the solver and the process converges perfectly. Then analyses are conducted with this simulator.展开更多
文摘The effect of heat treatment on microstructure and mechanical properties of the Ti-steel explosive-rolling clad plate was elaborated by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), micro-hardness test and shear test. The composites were subjected to heat treatment at temperature of 650-950 ~C for 60 min. The results show that the heat treatment process results in a great enhancement of diffusion and microstructural transformation. The shear strength decreases as the treatment temperature increases. Heated at 850 ℃ or below, their shear strength decreases slowly as a result of the formation of TiC in the diffusion interaction layer; while at the temperature of 850 ℃ or above, the shear strength decreases obviously, which is the consequence of a large amount of Ti-Fe intermetaUics (Fe2Ti/FeTi) along with some TiC distributing continuously at diffusion reaction layer.
基金the Extraction Metallurgy Laboratory at the University of Johannesburg for equipment utilizationthe Department of Chemical Engineering at the North-West University for the support and promotion of this research.NSERC-DG, CFI, Public Works and Government Service, Canada (formally Devco arm of ECBC), the Industrial Research Chair of Mine Water Management at CBU, ACOA and IRAP grants
文摘The dissolution of a carbonatitic chalcopyrite(CuFeS2)was studied in H_(2)SO_(4)−Fe_(2)(SO_(4))_(3)−FeSO_(4)−H_(2)O at varying pH values(0.5−2.5)and 25℃ for 12 h.Experiments were conducted with a size fraction of 53−75μm.Low Cu recoveries,below 15%,were observed in all pH regimes.The results from the XRD,SEM−EDS,and optical microscopic(OM)analyses of the residues indicated that the dissolution proceeded through the formation of transient phases.Cu_(3.39)Fe_(0.61)S_(4) and Cu_(2)S were the intermediate phases at pH 0.5 and 1.0,respectively,whereas Cu_(5)FeS_(4) was the major mineral at pH 1.5 and 1.8.The thermodynamic modelling predicted the sequential formation of CuFeS_(2)→Cu_(5)FeS_(4)→Cu_(2)S→CuS.The soluble intermediates were Cu_(5)FeS_(4) and Cu2S,whilst,CuS and Cu_(3.39)Fe_(0.61)S_(4) were the refractory phases,supporting their cumulating behaviour throughout the dissolution.The obtained results suggest that the formation of CuS and Cu_(3.39)Fe_(0.61)S_(4) could contribute to the passive film formed during CuFeS_(2) leaching.
基金Supported by Natural Science Foundation of Hebei Province (No.502265)
文摘The distribution and characteristics of nonmetallic micro-inclusions of GCr15 bearing steel were explored through metallographic area method in virtue of tracer method and electronic microscope.The results show that the micro-inclusions,of which the average value is 0.032%,are mainly the compounds formed via the adsorption/aggregation of multielement deoxidized compounds and secondarily deoxidized products on tundish liquid level.The micro-inclusions of diameters from 0 to 5 μm are 92.5% in total,which basically determines the characteristics of inclusions distribution in casting slab.The inclusions of diameters more than 10 μm only account for less than 1% in total,which have little influence on steel quality.The relationship between equilibrium compositions of the first deoxidation products and molten steel compositions was also calculated based on thermodynamic theory.
文摘The effect of rolling to a total effective strain of 2 at the liquid nitrogen temperature and subsequent natural and artificial aging on the structure and service properties of the pre-quenched hot-pressed 2024 aluminum alloy was investigated.Using optical and electron microscopy,and X-ray analysis,it was found that the cryorolling did not qualitatively change the type of the initial coarse-fibered microstructure,but produced a well-developed nanocell substructure inside fibers.Further aging led to decomposition of the preliminary supersaturated and work-hardened aluminum solid solution and precipitation of strengthening phases in the statically recovered and/or recrystallized matrix.As a result,the rolled and naturally aged alloy demonstrated the yield and ultimate tensile strengths(YS=590 MPa,UTS=640 MPа)much higher than those in the pressed andТ6-heat treated alloy at equal elongation to failure(El^6%).Artificial aging at a temperature less than conventional T6 route could provide the extra alloy strengthening and the unique balance of mechanical properties,involving enhanced strength(YS=610 MPa,UTS=665 MPа)and ductility(El^10%),and good static crack resistance(the specific works for crack formation and growth were 42 and 18 k J/m^2,respectively)and corrosion resistance(the intensity and depth of intercrystalline corrosion were 23%and 50μm,respectively).
基金Supported by the Science and Technology Planning Project of Guangdong Province,China(2017A0505010362015B020235013+4 种基金2015A0202150332017B090907012)the Scientific and Technological Planning Project of Guangzhou,China(2016201604030058201704030109)Guangdong Special Support Program for Training High Level Talents(2014TQ01Z248)
文摘Thermodynamic equilibrium calculations were performed to reveal effects of interactions among Cl, S, P and other minerals on Cu migration. Our results showed that HCl(g), SO2(g) and (P2O5)2(g) were released from the sewage sludge co-incineration. Cl was found to weaken adsorption of Cu by Al2O3, CaO and Fe2O3, while S de- layed reactions of Fe2O3 and Al2O3 with Cu, with P having no effect on reactions between the minerals and Cu. Among the coupled systems ofCl, S and P, the co-existences of Cl and S, and Cl, S and P were determined to inhibit Cu volatilization, and the co-existence of Cl and P had an enhancing effect Cu migration was affected only by S in the S and P system. With the SiO2, CaO and Al2O3 system, both Cl alone and Cl and P led to failed reactions be- tween the minerals and Cu. In the systems of S, S and Cl, S and P, and S, Cl and P, the migration behavior of Cu was mainly affected by S at low temperatures and by Cl at high temperatures, whereas P had no effect on Cu mi- gration during the entire nrocess.
基金Jahangirnagar University,Savar,Dhaka,Bangladesh for providing financial support to carry out the research work
文摘Cloud point (CP) determinations of 4-(1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol (TX-100 (nonionic surfactant)) was carried out in aqueous as well as in the attendance of drug (ceftriaxone sodium trihydrate (CFT))/(CFT + different inorganic salts) and discussed thoroughly. Nonionic surfactants are employed exten- sively in different formulations. In aqueous solution, the values of CP of TX-100 are obtained to increase by means of enhancing of their concentration in the solution. The CP values of TX-100 solutions were found to de- crease in the presence of drug and their values decrease more with rising concentrations of the drug. The values of CP of CFT and TX-100 mixtures were found to further decrease in the attendance of inorganic salts in compar- ison to their absence. The effect of different sodium salts in decreasing CP values of TX-100 was achieved in the following order: NaCO3 〉 Na2SO4 〉 NaCl. However, in the case of potassium and ammonium salts, the decreasing order obtained is K2SO4 〉 KCO3 〉 KCI and (NH4)2SO4 〉 Na2CO3 〉 NH4Cl respectively. Various thermodynamic pa- rameters for example standard free energy (△G c), standard enthalpy (△H c) as well as standard entropy (△S c) changes of phase separation were also evaluated and discussed in detail on the basis of their behavior.
基金Projects(51579239,42077240,51979280)supported by the National Natural Science Foundation of China。
文摘The dynamic mechanical properties of rock specimens after thermal treatment in the air-filled environment(AE:i.e.,at the free surface)have been extensively investigated,yet they are rarely estimated in the quasi-vacuum environment(VE:i.e.,far from free surface),which is of special importance in engineering practice.Several precise laboratory tests(i.e.,split Hopkinson pressure bar test)on marble samples in both AE and VE were performed to investigate physical and dynamic mechanical behaviors of marble after heat treatment(25℃ to 900℃)in AE and VE.The tests results demonstrate that related properties of marble could be divided into three different stages by corresponding critical temperatures of 300℃ and 600℃,at which heat damage factors are 0.29(0.30)and 0.88(0.92)in VE(AE),respectively.The thermal damage developes more fully in AE than in VE.The thermal environment plays an important role,especially in Stage 3.Specifically,a conspicuous difference(greater than 20%)between AE and VE occurs in corresponding dynamic strength and the anti-deformation capacities of tested marble specimen.The influence of heat damage of rock is very important and valuable in engineering practice,particularly when the temperature is very high(greater than 600℃).
基金Projects(51174094, 51101059) supported by the National Natural Science Foundation of China
文摘The glass formation was intensively studied for Fe-based alloys. Parameters defining kinetics and thermodynamic behavior of crystallization were calculated using calorimetric measurements and physical properties of constituent elements. It is found that the critical cooling rate Rc estimated by combining kinetic and thermodynamic parameters highly correlates with measured Rc found in literatures with correlation coefficient R2=0.944, and alloy compositions with high melting enthalpy AHm can easily form glass even without high undercooling and high value of the ,β-parameter of Tumbull's theory, revealing that the glass formation in this group of alloys is mostly controlled by growth limitation. This combination of kinetic and thermodynamic parameters can be used to determine alloy composition with good glass forming ability in Fe-based alloys just using physical properties of alloying elements and calorimetric measurements.
基金Supported by the National Basic Research Program of China("973"Program,No.2012CB215302)National Natural Science Foundation of China(No.21206188 and No.21106177)+1 种基金China Postdoctoral Science Foundation(No.2012M511339)Fundamental Research Funds for the Central Universities(China University of Mining and Technology,No.2011QNA23)
文摘The pyrolysis behaviors of corn stalk(CS) and pine sawdust(PS) were investigated with thermogravimetry-mass spectroscopy(TG-MS).The peak temperature of PS was higher and the main decomposition region shifted to higher temperature compared with CS,which implied that the hemicellulose and cellulose of PS were more thermally stable than those of CS.However,the hemicellulose and cellulose of PS were more easily decomposed into gaseous products than those of CS during pyrolysis.The pyrolysis process of biomass can be described by a two-step independent first-order kinetic model.This fundamental study provides a basic insight into the biomass pyrolysis,which is beneficial for understanding the pyrolysis mechanism of biomass and developing an advanced thermal process for effective utilization of biomass.
文摘Aim To simulate the thermal cyclic effects of metal matrix compeithe. Methods Based on Eshelby′s inclusion theory, a constitutive model for metal matrix composites and an elastic constraint method were formulated to predict the cyclic isothermal and cyclic thermomechanical behaviors of metal matrix composites. Results and Conclusion A SiC reinforced A1 2xxx-T4 composite was studied theoretically with the model. With the constitutive relation of the matrix, the mechanical behaviors of the composite under different loading condition, such as different loading rates, mechanical and thermal mechanical cyclic loading, can be quantitatively predicted. The thermal ratchetting effect of the composite can be predicted by the model.
文摘The bench-scale cooling crystallization for ternary solution of L-ascorbic acid (Vitamin C) was studied.The solid-liquid phase diagram of Vitamin C-water-ethanol system was obtained on the basis of differential scanning calorimeter (DSC) curves. The heat of crystallization of Vitamin C was calculated with the aid of quantitative analysis. According to the population balance equation under unsteady state, the rates of nucleation and growth were determined. The parameters of crystallization kinetics equations were estimated by regression of experimental data. Crystal morphology and size were determined with x-ray diffraction and TA Ⅱ Coulter Counter.
文摘Thermal decomposition of polylactic acid (PLA) was studied in the presence of pine wood sawdust (PS), walnut shell (WS), corncob (CC) in order to understand the pyrolytic behavior of these components occurring in waste. A thermogravimetric analyzer (TGA) was applied for monitoring the mass loss profiles under heating rate of 10℃·min^-1. Results obtained from this comprehensive investigation indicated that PLA was decomposed in the temperature range 300 -372℃, whereas the thermal degradation temperature of biomass is 183-462℃. The difference of mass loss (AW) between experimental and theoretical ones, calculated as algebraic sums of those from each separated component, is about 17%-46% at 300-400℃. These experimental results indicated a significant synergistic effect during PLA and biomass copyrolysis. Moreover, a kinetic analysis was performed to fit thermogravimetric data, the global processes being considered as one to two consecutive reactions. A reasonable fit to the experimental data was obtained for all materials and their blends.
基金Supported by the National Basic Research Program of China(2013CB733600)
文摘Rectisol process is more efficient in comparison with other physical or chemical absorption methods for gas purification. To implement a real time simulation of Rectisol process, thermodynamic model and simulation strategy are needed. In this paper, a method of modified statistical associated fluid theory with perturbation theory is used to predict thermodynamic behavior of process. As Rectisol process is a highly heat-integrated process with many loops, a method of equation oriented strategy, sequential quadratic programming, is used as the solver and the process converges perfectly. Then analyses are conducted with this simulator.