3D urchin-like Co3O4 have been successfully prepared by calcination of the urchin-like precursors, which were synthesized through a facile hydrothermal route. The morphology and structure of the 3D urchin-like Co3O4 h...3D urchin-like Co3O4 have been successfully prepared by calcination of the urchin-like precursors, which were synthesized through a facile hydrothermal route. The morphology and structure of the 3D urchin-like Co3O4 have been characterized by field emission scanning electron microscopy, transmission electron microscopy, high resolution transmission electron microscopy, and X-ray powder diffraction. The as-synthesized Co3O4 products are of urchin-like structures with approximated 5-7 μm in diameter, and are composed of numerous nanoparticles chains with the particles diameter of about 15 nm. This kind of urchin-like Co3O4 exhibits superior energy storage properties with the high capacity of 1.369 Ah/g and its good cyclic stability shows great potential in the rechargeable Li-ion battery.展开更多
Based on the lithium-ion battery pure electric vehicle (PEV) application, two capacity types of batteries are applied in thermal characteristic experiments. With the experimental comparison method, battery thermal c...Based on the lithium-ion battery pure electric vehicle (PEV) application, two capacity types of batteries are applied in thermal characteristic experiments. With the experimental comparison method, battery thermal characteristics and heat generation mechanism are studied. Experiments of batteries in cases of different dimensions, batteries with different air cooling velocity and two capacity types of batteries in free convection environment are put forward. Battery heat generation performance, heat dissipation performance and comparison of different capacity types' batteries are researched and summarized. Conclusions of battery heat generation and dissipation in PEV applications, important battery thermal management factors and suggestions are put forward.展开更多
Heat transfer of an SI engine's piston is calculated by employing three different methods based on resistor-capacitor model with the help of MATLAB code, and then the piston is thermo-mechanically analyzed using c...Heat transfer of an SI engine's piston is calculated by employing three different methods based on resistor-capacitor model with the help of MATLAB code, and then the piston is thermo-mechanically analyzed using commercial ANSYS code. The results of three methods are compared to study their effects on the piston thermal behavior. It is shown that resistor-capacitor model with less number of equations and consequently less solution time, is an appropriate method for solving problems of engine piston heat transfer. In the second part, the thermal stresses due to non-uniform temperature distribution, and mechanical stresses due to mechanical loads are calculated. Finally, the temperature distributions as a thermal load along with mechanical loads are applied to the piston to determine the total stress distribution and critical fracture zones. It is found that the amount of thermal stresses is considerable.展开更多
A promising Co3O4/Cu O composite electrode material was successfully synthesized through a facile hydrothermal and calcination process. Effects of the surfactants hexadecyltrimethyl ammonium bromide(CTAB) and polyvi...A promising Co3O4/Cu O composite electrode material was successfully synthesized through a facile hydrothermal and calcination process. Effects of the surfactants hexadecyltrimethyl ammonium bromide(CTAB) and polyvinylpyrrolidone(PVP) on the morphology and electrochemical performance of the composite were investigated. Powder X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM) and nitrogen adsorption-desorption experiment were employed to characterize the microstructures and morphologies of the composite. Meanwhile, the electrochemical performances of the samples were studied using cyclic voltammetry(CV), galvanostatic charge-discharge test and electrochemical impedance spectroscopy(EIS). The results show that the porous Co3O4/Cu O-CTAB nanoplates own the best performance and exhibits a high specific capacitance of 398 F/g at 1 A/g with almost 100% capacitance retention over 2000 cycles, and it retains 90% of capacitance at 10 A/g.展开更多
Isometric heat capacity cv and isobar heat capacity cp of Ru metal in HCP,FCC,BCC and liquid state were calculated by using pure element systematic theory.The results are in good agreement with joint army-navy-air for...Isometric heat capacity cv and isobar heat capacity cp of Ru metal in HCP,FCC,BCC and liquid state were calculated by using pure element systematic theory.The results are in good agreement with joint army-navy-air force(JANAF) experimental value and the calculation result by first-principle(FP) method.But the results have great differences in contrast to Scientific Group Thermodata Europe(SGTE) database.The cause is found that it cannot neglect the electron devotion to heat capacity to adjust cp in one-atom(OA) method.The disparity between OA method and SGTE database was discussed.The main cause is that OA method adopts the crosspoint with iso-Ec-line and iso-a-line in hybritriangle to determine the properties,but SGTE database is obtained by extrapolation from activity measurements and critical assessment of data from a large number of binary system.Thermodynamic properties of Ru metal in HCP,FCC,BCC and liquid state,such as entropy S,enthalpy H and Gibbs energy G were calculated.Therefore,the full description of thermodynamic properties from 0 K to random temperature is implemented.展开更多
Graphene under high temperature was prepared and loaded on Ni foam.Then,cobalt tetroxide precursor was grown on Ni foam in situ by the hydrothermal method.Finally,the sample was burned at high temperature to obtain Co...Graphene under high temperature was prepared and loaded on Ni foam.Then,cobalt tetroxide precursor was grown on Ni foam in situ by the hydrothermal method.Finally,the sample was burned at high temperature to obtain Co_(3)O_(4)+graphene@Ni.The hydrothermal method used in this paper is easy to operate,with low-risk factors and environmental protection.The prepared Co_(3)O_(4)+graphene@Ni electrode exhibits superior electrochemical performance than Co_(3)O_(4)@Ni electrode.At a current density of 1 A/g,the specific capacitance of the Co_(3)O_(4)+graphene@Ni electrode calculated by a charge-discharge test is 935 F/g,which is much larger than that of Co_(3)O_(4)@Ni electrode of 340 F/g.展开更多
We derive a formula of the nonadiabatic noncyclic Pancharatnam phase for a mesoscopic circuit with coupled inductors and capacitors. It shows that, because of coupling effect, the circuit is in squeezed quantum state ...We derive a formula of the nonadiabatic noncyclic Pancharatnam phase for a mesoscopic circuit with coupled inductors and capacitors. It shows that, because of coupling effect, the circuit is in squeezed quantum state initially, and the time evolution of Pancharatnam phase exhibits an oscillation in a complex way. Especially we find that when the capacity of the coupled capacitors is larger than that of other ones in the circuit, with the variation of time Pancharatnam phase becomes nearly periodic square-wave, which perhaps can provide a new approach for the realization of quantum logic gate.展开更多
Through analyzing the proportion of SO2 emission from thermal power plants in the nationwide SO2 emis- sion in USA, Japan etc. developed countries, and the developmental course of thermal power installed capacity and ...Through analyzing the proportion of SO2 emission from thermal power plants in the nationwide SO2 emis- sion in USA, Japan etc. developed countries, and the developmental course of thermal power installed capacity and the FGD capacity in USA, the FGD capacity of thermal power plants in China is forecasted from two angles. One is to predict FGD capacity in accordance with the policy in force in China. The other is to predict FGD capacity based upon the emission right trading policy. As compared, it is held that FGD equipment should be mainly installed on the large size units burning high sulfur coal according to the emission right trading policy. Such a method of work not only can economize large amount of investments and operation costs, but also can realize the same environmental effect.展开更多
A reduced graphene oxide/Ni(OH)2 composite with excellent supercapacitive performance was synthesized by a facile hydrothermal route without organic solvents or templates used.XRD and SEM results reveal that the nicke...A reduced graphene oxide/Ni(OH)2 composite with excellent supercapacitive performance was synthesized by a facile hydrothermal route without organic solvents or templates used.XRD and SEM results reveal that the nickel hydroxide,which crystallizes into hexagonal β-Ni(OH)2 nanoflakes with a diameter less than 200 nm and a thickness of about 10 nm,is well combined with the reduced graphene oxide sheets.Electrochemical performance of the synthesized composite as an electrode material was investigated by cyclic voltammetry,electrochemical impedance spectroscopy and galvanostatic charge/discharge measurements.Its specific capacitance is determined to be 1672 F/g at a scan rate of 2 mV/s,and 696 F/g at a high scan rate of 50 mV/s.After 2000 cycles at a current density of 10 A/g,the composite exhibits a specific capacitance of 969 F/g,retaining about 86% of its initial capacitance.The composite delivers a high energy density of 83.6 W·h/kg at a power density of 1.0 kW/kg.The excellent supercapacitive performance along with the easy synthesis method allows the synthesized composite to be promising for supercapacitor applications.展开更多
Many zeotropic refrigerant mixtures are proposed as alternatives to some chlorofluorocar-bons (CFCs) and hydrochlorofluorocarbons ( HCFCs). An advantage of zeotropic mixtures is the possibility of reduction in entropy...Many zeotropic refrigerant mixtures are proposed as alternatives to some chlorofluorocar-bons (CFCs) and hydrochlorofluorocarbons ( HCFCs). An advantage of zeotropic mixtures is the possibility of reduction in entropy generation by matching the temperature glidings of refrigerant and heat-transfer fluid in both condenser and evaporator. Zeotropic mixtures are compared with pure re-frigerants to evaluate their exergetic losses. On the other hand, the special phenomena which result from temperature gliding are proved by experiments. A simple equation is obtained, to evaluate dif-ferent zeotropic mixtures' exergetic losses. The maximum flow rate of heat-transfer fluids is found in order that refrigerants phase change can be completed. Lastly, some examples of zeotropic mix-tures ( R407C, R405A and R414B) are given, and their exergetic losses and maximum flow rate of heat-transfer fluids in condenser are forecasted.展开更多
A soil temperature control system was designed for sapling study in alpine region and tested in summer, 2009. The system consisted of a power switch, voltage regulator, microcomputer timer, safety relays, temperature ...A soil temperature control system was designed for sapling study in alpine region and tested in summer, 2009. The system consisted of a power switch, voltage regulator, microcomputer timer, safety relays, temperature control device, temperature sensors, heating cables, fireproofing plastic pipes (PVC), 108 heavy-duty plastic containers and seedlings. The heating cables were held in six 2-layer PVC frames with 25 cm wide, 320 cm long and 25 cm high and three 1-layer frames with 25 cm wide and 320 cm long for 15°C soil temperature treatment, half of the 2-layer frames were used for 20°C and 25°C soil temperature treatments, respectively. Each of the frames was installed at each of ditches with 30 cm wide, 330 cm long and 30 cm deep in size. 12 seedling containers with 20 cm top diameter, 18cm bottom diameter and 25 cm high were homogenously placed at each of the ditches, and spaces between the containers were filled with natural soil. The system was economic, and could increase soil temperatures obviously and uniformly, the maximal and minimal standard errors of soil temperatures were ±0.28 and ±0.05°C at 10cm depth in the containers within each of all the ditches. In the system, aboveground environment was natural, diurnal and monthly soil temperatures varied with changing air temperature, the research results may be better to know the eco-physiological and growth responses of alpine saplings/seedlings to soil warming than that in greenhouse, laboratory, infrared heat lamp and open top chamber.展开更多
In the present paper that considers the possibility for modification of equation of state for a non-polar gas in a closed thermally-insulated capacitor and, consequently, the possibility for changing the temperature a...In the present paper that considers the possibility for modification of equation of state for a non-polar gas in a closed thermally-insulated capacitor and, consequently, the possibility for changing the temperature and pressure under electrostatic field. This can be classified as a new type of phase transitions.展开更多
Fe3O4 magnetic nanoparticles with diameters varying from 10 to 426 nm were synthesized and characterized.Heating effects of Fe3O4 magnetic nanoparticles under radiofrequency capacitive field(RCF) with frequency of 27....Fe3O4 magnetic nanoparticles with diameters varying from 10 to 426 nm were synthesized and characterized.Heating effects of Fe3O4 magnetic nanoparticles under radiofrequency capacitive field(RCF) with frequency of 27.12 MHz and power of 60-150 W were investigated.When the power of RCF is lower than 90 W,temperatures of Fe3O4 magnetic nanoparticles(75-150 mg/mL) can be raised and maximal temperatures are all lower than 50 ℃.When the power of RCF is 90-150 W,temperatures of Fe3O4 magnetic nanoparticles can be quickly raised and are all obviously higher than those of normal saline and distilled water under the same conditions.Temperature of Fe3O4 magnetic nanoparticles can even reach 70.2 ℃ under 150 W RCF.Heating effects of Fe3O4 magnetic nanoparticles are related to RCF power,particle size and particle concentration.展开更多
A special device was designed to measure temperature difference in this study of heat transfer of water and oil cross flow inside vertical upward tubes. A new heat transfer correlation was obtained for cross flow. The...A special device was designed to measure temperature difference in this study of heat transfer of water and oil cross flow inside vertical upward tubes. A new heat transfer correlation was obtained for cross flow. The experimental results showed that the dependence of heat transfer on Reynolds is much smaller in a narrow space than that in a wide space. It was found that the heat transfer correlation of cross flow in a narrow space is obviously different from that in a wide space, and that the heat transfer correlation obtained in a wide space may not be applicable to the cross-flow heat transfer in a narrow space. Further, the single-phase heat transfer capability of water cross flow was compared with that of oil cross flow. The experimental results showed that the average heat transfer coefficient of water is about 2~3 times that ofoil when they have the same superficial velocity.展开更多
Electricity generation generally is made in thermal, hydro, geothermal power plants and windfarms/windparks. Because of some advantages such as renewability, low-cost, clean, safe and naturality geothermal and wind en...Electricity generation generally is made in thermal, hydro, geothermal power plants and windfarms/windparks. Because of some advantages such as renewability, low-cost, clean, safe and naturality geothermal and wind energy will have been electricity generation source in the near future. Turkey has hot water springs suitable for electricity generation between 130-242 ~C with natural vapor and hydrothermal alterations in connection with grabens limited to active faults and diffuse young volcanism in Western Anatolia Region. Other renewable energy and electricity generation resource is wind energy. In Turkey electricity generation is made by windfarms/windparks. These parks/farms are generated 1,414.55 MW electricity. The year 2010 electricity general total installed capacity in Turkey is about 49,524.1 MW. According to the total installed capacity, thermal power plants have 65.18%, hydro power plants have 31.97%, geothermal power plants and wind farms have 2.85%. Electricity generation generally was obtained from 15 thermal power plants. In this study high temperature geothermal fields and windparks/windfarms in Turkey which are suitable for electricity generation potential were investigated.展开更多
The LiMoS: anode material for lithium ion rechargeable batteries were synthesized by a hydrothermal method at 150 ℃. According to our measurements with X-ray diffraction, LiMoS2 was amorphous structure. Electrochemi...The LiMoS: anode material for lithium ion rechargeable batteries were synthesized by a hydrothermal method at 150 ℃. According to our measurements with X-ray diffraction, LiMoS2 was amorphous structure. Electrochemical measurements results showed that LiMoS2 exhibited large lithium storage capacities.展开更多
The heat capacity and the electric capacitance of the black p-branes(BPB) are generally defined,then they are calculated for some special processes.It is found that the Ruppeiner thermodynamic geometry of BPB is flat....The heat capacity and the electric capacitance of the black p-branes(BPB) are generally defined,then they are calculated for some special processes.It is found that the Ruppeiner thermodynamic geometry of BPB is flat.Finally,we give some discussions for the flatness of the Ruppeiner thermodynamic geometry of BPB and some black holes.展开更多
Using the Kane-Mele Hamiltonian, Dirac theory and self-consistent Born approximation, we investigate the effect of dilute charged impurity on the electronic heat capacity and magnetic susceptibility of two-dimensional...Using the Kane-Mele Hamiltonian, Dirac theory and self-consistent Born approximation, we investigate the effect of dilute charged impurity on the electronic heat capacity and magnetic susceptibility of two-dimensional ferromagnetic honeycomb structure of group-Ⅳ elements including silicene, germanene and stanene within the Green's function approach. We also find these quantities in the presence of applied external electric field. Our results show that the silicene(stanene) has the maximum(minimum) heat capacity and magnetic susceptibility at uniform electric fields. From the behavior of theses quantities, the band gap has been changed with impurity concentration, impurity scattering strength and electric field. The analysis on the impurity-dependent magnetic susceptibility curves shows a phase transition from ferromagnetic to paramagnetic and antiferromagnetic phases. Interestingly, electronic heat capacity increases(decreases) with impurity concentration in silicene(germanene and stanene) structure.展开更多
The electrocaloric effect(ECE) of multilayer ceramic capacitor(MLCC) of Y5 V type was directly measured via a differential scanning calorimetry(DSC) method and a reference resistor was used to calibrate the heat flow ...The electrocaloric effect(ECE) of multilayer ceramic capacitor(MLCC) of Y5 V type was directly measured via a differential scanning calorimetry(DSC) method and a reference resistor was used to calibrate the heat flow due to the heat dissipation. The results are compared with those calculated from Maxwell relations by using the polarization data obtained from the polarization–electric field hysteresis loops. The direct method shows a larger ECE temperature change, which is accounted for the situation approaches an ideal condition. For the indirect method using Maxwell relations, only the polarization projection along the electric field was taken into account, which will be less than the randomly distributed real polarizations that contribute to the ECE. The MLCCs exhibit a broad peak of ECE around 80 C, which will be favorite for the practical ECE cooling devices.展开更多
基金This work was supported by the National Natural Science Foundation of China (No.11074254), the Ministry of Science and Technology of China (No.2005CB623603), the Hundred Talent Program of Chinese Academy of Sciences, and the President Foundation of Hefei Institute of Physical Sciences.
文摘3D urchin-like Co3O4 have been successfully prepared by calcination of the urchin-like precursors, which were synthesized through a facile hydrothermal route. The morphology and structure of the 3D urchin-like Co3O4 have been characterized by field emission scanning electron microscopy, transmission electron microscopy, high resolution transmission electron microscopy, and X-ray powder diffraction. The as-synthesized Co3O4 products are of urchin-like structures with approximated 5-7 μm in diameter, and are composed of numerous nanoparticles chains with the particles diameter of about 15 nm. This kind of urchin-like Co3O4 exhibits superior energy storage properties with the high capacity of 1.369 Ah/g and its good cyclic stability shows great potential in the rechargeable Li-ion battery.
文摘Based on the lithium-ion battery pure electric vehicle (PEV) application, two capacity types of batteries are applied in thermal characteristic experiments. With the experimental comparison method, battery thermal characteristics and heat generation mechanism are studied. Experiments of batteries in cases of different dimensions, batteries with different air cooling velocity and two capacity types of batteries in free convection environment are put forward. Battery heat generation performance, heat dissipation performance and comparison of different capacity types' batteries are researched and summarized. Conclusions of battery heat generation and dissipation in PEV applications, important battery thermal management factors and suggestions are put forward.
文摘Heat transfer of an SI engine's piston is calculated by employing three different methods based on resistor-capacitor model with the help of MATLAB code, and then the piston is thermo-mechanically analyzed using commercial ANSYS code. The results of three methods are compared to study their effects on the piston thermal behavior. It is shown that resistor-capacitor model with less number of equations and consequently less solution time, is an appropriate method for solving problems of engine piston heat transfer. In the second part, the thermal stresses due to non-uniform temperature distribution, and mechanical stresses due to mechanical loads are calculated. Finally, the temperature distributions as a thermal load along with mechanical loads are applied to the piston to determine the total stress distribution and critical fracture zones. It is found that the amount of thermal stresses is considerable.
基金Project(21471162)supported by the National Natural Science Foundation of ChinaProject(2014LY36)supported by the Science and Technology Project of Longyan CityChina
文摘A promising Co3O4/Cu O composite electrode material was successfully synthesized through a facile hydrothermal and calcination process. Effects of the surfactants hexadecyltrimethyl ammonium bromide(CTAB) and polyvinylpyrrolidone(PVP) on the morphology and electrochemical performance of the composite were investigated. Powder X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM) and nitrogen adsorption-desorption experiment were employed to characterize the microstructures and morphologies of the composite. Meanwhile, the electrochemical performances of the samples were studied using cyclic voltammetry(CV), galvanostatic charge-discharge test and electrochemical impedance spectroscopy(EIS). The results show that the porous Co3O4/Cu O-CTAB nanoplates own the best performance and exhibits a high specific capacitance of 398 F/g at 1 A/g with almost 100% capacitance retention over 2000 cycles, and it retains 90% of capacitance at 10 A/g.
基金Project(50954006) supported by the National Natural Science Foundation of ChinaProject(2009GK3152) supported by Natural Science Foundation of Hunan Province, China+2 种基金Project(21KZ) supported by Scientific Research Fund of Hunan Provincial Education Department, ChinaProject supported by the Opening Measuring Fund of Large Precious Apparatus, ChinaProject supported by the State Key Laboratory of Powder Metallurgy, China
文摘Isometric heat capacity cv and isobar heat capacity cp of Ru metal in HCP,FCC,BCC and liquid state were calculated by using pure element systematic theory.The results are in good agreement with joint army-navy-air force(JANAF) experimental value and the calculation result by first-principle(FP) method.But the results have great differences in contrast to Scientific Group Thermodata Europe(SGTE) database.The cause is found that it cannot neglect the electron devotion to heat capacity to adjust cp in one-atom(OA) method.The disparity between OA method and SGTE database was discussed.The main cause is that OA method adopts the crosspoint with iso-Ec-line and iso-a-line in hybritriangle to determine the properties,but SGTE database is obtained by extrapolation from activity measurements and critical assessment of data from a large number of binary system.Thermodynamic properties of Ru metal in HCP,FCC,BCC and liquid state,such as entropy S,enthalpy H and Gibbs energy G were calculated.Therefore,the full description of thermodynamic properties from 0 K to random temperature is implemented.
基金Project(21502014)supported by the National Natural Science Foundation of ChinaProjects(20180550736,2019-ZD 0117)supported by the Natural Science Foundation of Liaoning Province,China+1 种基金Projects(JDL 2019004,JDL 2017027)supported by the Research Foundation of Educational Committee of Liaoning Province,ChinaProject(191008-K)supported by Guangxi Key Laboratory of Information Materials(Guilin University of Electronic Technology),China。
文摘Graphene under high temperature was prepared and loaded on Ni foam.Then,cobalt tetroxide precursor was grown on Ni foam in situ by the hydrothermal method.Finally,the sample was burned at high temperature to obtain Co_(3)O_(4)+graphene@Ni.The hydrothermal method used in this paper is easy to operate,with low-risk factors and environmental protection.The prepared Co_(3)O_(4)+graphene@Ni electrode exhibits superior electrochemical performance than Co_(3)O_(4)@Ni electrode.At a current density of 1 A/g,the specific capacitance of the Co_(3)O_(4)+graphene@Ni electrode calculated by a charge-discharge test is 935 F/g,which is much larger than that of Co_(3)O_(4)@Ni electrode of 340 F/g.
文摘We derive a formula of the nonadiabatic noncyclic Pancharatnam phase for a mesoscopic circuit with coupled inductors and capacitors. It shows that, because of coupling effect, the circuit is in squeezed quantum state initially, and the time evolution of Pancharatnam phase exhibits an oscillation in a complex way. Especially we find that when the capacity of the coupled capacitors is larger than that of other ones in the circuit, with the variation of time Pancharatnam phase becomes nearly periodic square-wave, which perhaps can provide a new approach for the realization of quantum logic gate.
文摘Through analyzing the proportion of SO2 emission from thermal power plants in the nationwide SO2 emis- sion in USA, Japan etc. developed countries, and the developmental course of thermal power installed capacity and the FGD capacity in USA, the FGD capacity of thermal power plants in China is forecasted from two angles. One is to predict FGD capacity in accordance with the policy in force in China. The other is to predict FGD capacity based upon the emission right trading policy. As compared, it is held that FGD equipment should be mainly installed on the large size units burning high sulfur coal according to the emission right trading policy. Such a method of work not only can economize large amount of investments and operation costs, but also can realize the same environmental effect.
基金Project(KJ2012A045) supported by the Natural Science Foundation of Education Commission of Anhui Province,China
文摘A reduced graphene oxide/Ni(OH)2 composite with excellent supercapacitive performance was synthesized by a facile hydrothermal route without organic solvents or templates used.XRD and SEM results reveal that the nickel hydroxide,which crystallizes into hexagonal β-Ni(OH)2 nanoflakes with a diameter less than 200 nm and a thickness of about 10 nm,is well combined with the reduced graphene oxide sheets.Electrochemical performance of the synthesized composite as an electrode material was investigated by cyclic voltammetry,electrochemical impedance spectroscopy and galvanostatic charge/discharge measurements.Its specific capacitance is determined to be 1672 F/g at a scan rate of 2 mV/s,and 696 F/g at a high scan rate of 50 mV/s.After 2000 cycles at a current density of 10 A/g,the composite exhibits a specific capacitance of 969 F/g,retaining about 86% of its initial capacitance.The composite delivers a high energy density of 83.6 W·h/kg at a power density of 1.0 kW/kg.The excellent supercapacitive performance along with the easy synthesis method allows the synthesized composite to be promising for supercapacitor applications.
基金Supported by National Natural Science Foundation of China( No. 50476062) .
文摘Many zeotropic refrigerant mixtures are proposed as alternatives to some chlorofluorocar-bons (CFCs) and hydrochlorofluorocarbons ( HCFCs). An advantage of zeotropic mixtures is the possibility of reduction in entropy generation by matching the temperature glidings of refrigerant and heat-transfer fluid in both condenser and evaporator. Zeotropic mixtures are compared with pure re-frigerants to evaluate their exergetic losses. On the other hand, the special phenomena which result from temperature gliding are proved by experiments. A simple equation is obtained, to evaluate dif-ferent zeotropic mixtures' exergetic losses. The maximum flow rate of heat-transfer fluids is found in order that refrigerants phase change can be completed. Lastly, some examples of zeotropic mix-tures ( R407C, R405A and R414B) are given, and their exergetic losses and maximum flow rate of heat-transfer fluids in condenser are forecasted.
基金supported by the National Natural Science Foundation of China (Grant No. 30872000 and 41071203)partially supported by the Project of Knowledge Innovation, Chinese Academy of Sciences (No. KZXZ-YW-33)Sichuan Foundation of Excellent Young Scientists (No. 2010JQ0026)
文摘A soil temperature control system was designed for sapling study in alpine region and tested in summer, 2009. The system consisted of a power switch, voltage regulator, microcomputer timer, safety relays, temperature control device, temperature sensors, heating cables, fireproofing plastic pipes (PVC), 108 heavy-duty plastic containers and seedlings. The heating cables were held in six 2-layer PVC frames with 25 cm wide, 320 cm long and 25 cm high and three 1-layer frames with 25 cm wide and 320 cm long for 15°C soil temperature treatment, half of the 2-layer frames were used for 20°C and 25°C soil temperature treatments, respectively. Each of the frames was installed at each of ditches with 30 cm wide, 330 cm long and 30 cm deep in size. 12 seedling containers with 20 cm top diameter, 18cm bottom diameter and 25 cm high were homogenously placed at each of the ditches, and spaces between the containers were filled with natural soil. The system was economic, and could increase soil temperatures obviously and uniformly, the maximal and minimal standard errors of soil temperatures were ±0.28 and ±0.05°C at 10cm depth in the containers within each of all the ditches. In the system, aboveground environment was natural, diurnal and monthly soil temperatures varied with changing air temperature, the research results may be better to know the eco-physiological and growth responses of alpine saplings/seedlings to soil warming than that in greenhouse, laboratory, infrared heat lamp and open top chamber.
文摘In the present paper that considers the possibility for modification of equation of state for a non-polar gas in a closed thermally-insulated capacitor and, consequently, the possibility for changing the temperature and pressure under electrostatic field. This can be classified as a new type of phase transitions.
基金Projects(30571779,10775085) supported by the National Natural Science Foundation of ChinaProject(Z07000200540704) supported by Beijing Municipal Science and Technology Commission,China
文摘Fe3O4 magnetic nanoparticles with diameters varying from 10 to 426 nm were synthesized and characterized.Heating effects of Fe3O4 magnetic nanoparticles under radiofrequency capacitive field(RCF) with frequency of 27.12 MHz and power of 60-150 W were investigated.When the power of RCF is lower than 90 W,temperatures of Fe3O4 magnetic nanoparticles(75-150 mg/mL) can be raised and maximal temperatures are all lower than 50 ℃.When the power of RCF is 90-150 W,temperatures of Fe3O4 magnetic nanoparticles can be quickly raised and are all obviously higher than those of normal saline and distilled water under the same conditions.Temperature of Fe3O4 magnetic nanoparticles can even reach 70.2 ℃ under 150 W RCF.Heating effects of Fe3O4 magnetic nanoparticles are related to RCF power,particle size and particle concentration.
文摘A special device was designed to measure temperature difference in this study of heat transfer of water and oil cross flow inside vertical upward tubes. A new heat transfer correlation was obtained for cross flow. The experimental results showed that the dependence of heat transfer on Reynolds is much smaller in a narrow space than that in a wide space. It was found that the heat transfer correlation of cross flow in a narrow space is obviously different from that in a wide space, and that the heat transfer correlation obtained in a wide space may not be applicable to the cross-flow heat transfer in a narrow space. Further, the single-phase heat transfer capability of water cross flow was compared with that of oil cross flow. The experimental results showed that the average heat transfer coefficient of water is about 2~3 times that ofoil when they have the same superficial velocity.
文摘Electricity generation generally is made in thermal, hydro, geothermal power plants and windfarms/windparks. Because of some advantages such as renewability, low-cost, clean, safe and naturality geothermal and wind energy will have been electricity generation source in the near future. Turkey has hot water springs suitable for electricity generation between 130-242 ~C with natural vapor and hydrothermal alterations in connection with grabens limited to active faults and diffuse young volcanism in Western Anatolia Region. Other renewable energy and electricity generation resource is wind energy. In Turkey electricity generation is made by windfarms/windparks. These parks/farms are generated 1,414.55 MW electricity. The year 2010 electricity general total installed capacity in Turkey is about 49,524.1 MW. According to the total installed capacity, thermal power plants have 65.18%, hydro power plants have 31.97%, geothermal power plants and wind farms have 2.85%. Electricity generation generally was obtained from 15 thermal power plants. In this study high temperature geothermal fields and windparks/windfarms in Turkey which are suitable for electricity generation potential were investigated.
文摘The LiMoS: anode material for lithium ion rechargeable batteries were synthesized by a hydrothermal method at 150 ℃. According to our measurements with X-ray diffraction, LiMoS2 was amorphous structure. Electrochemical measurements results showed that LiMoS2 exhibited large lithium storage capacities.
基金Supported by National Natural Science Foundation of China under Grant No.201210782
文摘The heat capacity and the electric capacitance of the black p-branes(BPB) are generally defined,then they are calculated for some special processes.It is found that the Ruppeiner thermodynamic geometry of BPB is flat.Finally,we give some discussions for the flatness of the Ruppeiner thermodynamic geometry of BPB and some black holes.
文摘Using the Kane-Mele Hamiltonian, Dirac theory and self-consistent Born approximation, we investigate the effect of dilute charged impurity on the electronic heat capacity and magnetic susceptibility of two-dimensional ferromagnetic honeycomb structure of group-Ⅳ elements including silicene, germanene and stanene within the Green's function approach. We also find these quantities in the presence of applied external electric field. Our results show that the silicene(stanene) has the maximum(minimum) heat capacity and magnetic susceptibility at uniform electric fields. From the behavior of theses quantities, the band gap has been changed with impurity concentration, impurity scattering strength and electric field. The analysis on the impurity-dependent magnetic susceptibility curves shows a phase transition from ferromagnetic to paramagnetic and antiferromagnetic phases. Interestingly, electronic heat capacity increases(decreases) with impurity concentration in silicene(germanene and stanene) structure.
基金supported by the National Natural Science Foundation of China(Grant No.51372042)the Department of Education of Guangdong Province of People’s Republic of China(Grant No.2014GKXM039)+1 种基金Guangdong Provincial Natural Science Foundation(Grant No.2015A030308004)the NSFC-Guangdong Joint Fund(Grant NoU1501246)
文摘The electrocaloric effect(ECE) of multilayer ceramic capacitor(MLCC) of Y5 V type was directly measured via a differential scanning calorimetry(DSC) method and a reference resistor was used to calibrate the heat flow due to the heat dissipation. The results are compared with those calculated from Maxwell relations by using the polarization data obtained from the polarization–electric field hysteresis loops. The direct method shows a larger ECE temperature change, which is accounted for the situation approaches an ideal condition. For the indirect method using Maxwell relations, only the polarization projection along the electric field was taken into account, which will be less than the randomly distributed real polarizations that contribute to the ECE. The MLCCs exhibit a broad peak of ECE around 80 C, which will be favorite for the practical ECE cooling devices.