Diarylethene derivatives are a class of fascinating photochromic materials because of their open and closed isomers with different absorption spectra and many other characteristics.To reveal the detailed structure and...Diarylethene derivatives are a class of fascinating photochromic materials because of their open and closed isomers with different absorption spectra and many other characteristics.To reveal the detailed structure and optoelectronic properties as well as the effect of metal centres and substituents on them,a systematic study on a series of diarylethene derivatives and their Re(I),Pt(II),and Ir(III) complexes was performed via theoretical calculation.The optimized geometries,electronic properties,frontier molecular orbitals,ionization potentials,electron affinities,reorganization energies,and absorption spectra for both of their open-and closed-isomers have been calculated and analyzed.Metal-coordination and substituents exhibit great influence on the photophysical,charge-injection and-transporting characteristics.In addition,the binding of F-with the boron atom of dimesitylboryl group through Lewis acid/base interactions also induces great changes of structural,photophysical and electronic properties for these diarylethene derivatives,and consequently the compound with the substituent of dimesitylboryl group can be used as selective near-infrared phosphorescent F-probe.展开更多
基金supported by the National Basic Research Program of China (973 Program,2009CB930601 and 2012CB933301)National Natural Science Foundation of China (21174064,21171098)+4 种基金Natural Science Fund for Colleges and Universities in Jiangsu Province(10KJB430010)the Ministry of Education of China (IRT1148)Key Projects in Jiangsu Province for International Cooperation (BZ2010043)Nanjing University of Posts and Telecommunications (NY210029)Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Diarylethene derivatives are a class of fascinating photochromic materials because of their open and closed isomers with different absorption spectra and many other characteristics.To reveal the detailed structure and optoelectronic properties as well as the effect of metal centres and substituents on them,a systematic study on a series of diarylethene derivatives and their Re(I),Pt(II),and Ir(III) complexes was performed via theoretical calculation.The optimized geometries,electronic properties,frontier molecular orbitals,ionization potentials,electron affinities,reorganization energies,and absorption spectra for both of their open-and closed-isomers have been calculated and analyzed.Metal-coordination and substituents exhibit great influence on the photophysical,charge-injection and-transporting characteristics.In addition,the binding of F-with the boron atom of dimesitylboryl group through Lewis acid/base interactions also induces great changes of structural,photophysical and electronic properties for these diarylethene derivatives,and consequently the compound with the substituent of dimesitylboryl group can be used as selective near-infrared phosphorescent F-probe.