期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
聚丙烯腈纤维烯胺结构的形成及其氧化特性的研究 被引量:1
1
作者 张琪 华鲁 +2 位作者 雷帅 马良 徐梁华 《高科技纤维与应用》 CAS 2014年第2期24-28,共5页
将聚丙烯腈(PAN)纤维在惰性气氛下进行热处理,通过傅里叶红外光谱(FT-IR)、1 3C固体核磁共振(13C-NMR)、差示扫描量热(DSC)等方法研究了PAN纤维中烯胺结构的形成及其氧化特性。结果表明:惰性气氛下PAN纤维在热处理过程中氰基发生键断裂... 将聚丙烯腈(PAN)纤维在惰性气氛下进行热处理,通过傅里叶红外光谱(FT-IR)、1 3C固体核磁共振(13C-NMR)、差示扫描量热(DSC)等方法研究了PAN纤维中烯胺结构的形成及其氧化特性。结果表明:惰性气氛下PAN纤维在热处理过程中氰基发生键断裂形成亚胺结构,并在温度达到190℃时开始向烯胺结构转变;随着热稳定化过程的进行,亚胺结构增加到一定程度后呈现下降趋势,而烯胺结构不断增加;热处理温度越高,亚胺结构向烯胺结构转变的越多且速率越快;将在惰性气氛下经不同温度热处理得到的PAN纤维进行空气气氛下的DSC分析,发现氧化反应的放热量与烯胺结构含量存在较好的线性关系,表明烯胺结构比其他特征结构更容易发生氧化反应。 展开更多
关键词 聚丙腈纤维 热处理 烯胺结构 形成机理 氧化特性 研究
下载PDF
Structural Changes of Polyethylene Terephthalate Fibers Grafted by Acrylamide
2
作者 施琴芬 戴礼兴 《Journal of Donghua University(English Edition)》 EI CAS 2003年第3期1-4,共4页
A group of grafted PET fibers with different graft yield are formed by grafting acrylamide onto the PET main chains. The structure of grafted fibers are studied by scanning electronic microscope ( SEM ), infra-red spe... A group of grafted PET fibers with different graft yield are formed by grafting acrylamide onto the PET main chains. The structure of grafted fibers are studied by scanning electronic microscope ( SEM ), infra-red spectrophotometer ( IR ), and differential scanning calorimetry(DSC). At the same time, the moisture regain, dyeability, strength, and elongation at break of the samples are measured and their relations with structural changes are discussed. Compared with ungrafted fiber, shape of the fiber cross-section, IR characteristic absorption peaks, and melting behavior of the grafted fibers have been changed, causing the fiber dyeability and moisture regain to be increased, and mechanical properties to be changed. 展开更多
关键词 polyethylene terephthalate fiber GRAFT ACRYLAMIDE STRUCTURE
下载PDF
Preparation and Biocompatibility of Porous Poly(vinylalcohol)-Glycosaminoglycan-Collagen Scaffold 被引量:1
3
作者 LI Qin-hua MO Xiao-hui 《Chinese Journal of Biomedical Engineering(English Edition)》 2013年第1期15-22,共8页
This paper aims to prepare a PVA-GAG-COL composite with polyvinyl alcohol (PVA), glycosaminoglycan (GAG) and collagen (COL) by the method of freeze drying and to investigate the feasibility as a tissue engineering sca... This paper aims to prepare a PVA-GAG-COL composite with polyvinyl alcohol (PVA), glycosaminoglycan (GAG) and collagen (COL) by the method of freeze drying and to investigate the feasibility as a tissue engineering scaffold for tissue or organ repairing. In this study, SEM was used to observe the morphology. Biocompatibility was tested by cell culture with the extracted fluid of composite materials. Different proportional scaffolds could be obtained with different concentrations and alcoholysis degree of PVA. Different proportional scaffolds also had different porous structures. SEM proved that large amount of porous structure could be formed. Biocompatibility test showed that the extracted fluid of composite materials was nontoxic, which could promote the adhesion and proliferation of the fibroblast. Fibroblast could grow on the scaffold normally.A porous scaffold for tissue engineering with high water content can be fabricated by PVA, GAG and COL, which has excellent cell biocompatibility. The porous structure shows potential in tissue engineering and cell culture. 展开更多
关键词 poly(vinylalcohol) glycosaminoglycan collagen porous composite scaffold biocompatibility
下载PDF
Poly(N-isopropylacrylamide)-based thermo-responsive surfaces with controllable cell adhesion 被引量:7
4
作者 LIU HongLiang WANG ShuTao 《Science China Chemistry》 SCIE EI CAS 2014年第4期552-557,共6页
Poly(N-isopropylacrylamide)(PNIPAAm)-based thermo-responsive surfaces can switch their wettability(from wettable to non-wettable) and adhesion(from sticky to non-sticky) according to external temperature changes. Thes... Poly(N-isopropylacrylamide)(PNIPAAm)-based thermo-responsive surfaces can switch their wettability(from wettable to non-wettable) and adhesion(from sticky to non-sticky) according to external temperature changes. These smart surfaces with switchable interfacial properties are playing increasingly important roles in a diverse range of biomedical applications; these controlling cell-adhesion behavior has shown great potential for tissue engineering and disease diagnostics. Herein we reviewed the recent progress of research on PNIPAAm-based thermo-responsive surfaces that can dynamically control cell adhesion behavior. The underlying response mechanisms and influencing factors for PNIPAAm-based surfaces to control cell adhesion are described first. Then, PNIPAAm-modified two-dimensional flat surfaces for cell-sheet engineering and PNIPAAm-modified three-dimensional nanostructured surfaces for diagnostics are summarized. We also provide a future perspective for the development of stimuli-responsive surfaces. 展开更多
关键词 poly(N-isopropylacrylamide) (PNIPAAm) THERMO-RESPONSIVE smart surface cell adhesion NANOSTRUCTURE
原文传递
Synthesis of hierarchical Polystyrene/Polyaniline@Au nanostructures of different surface states and studies of their catalytic properties 被引量:2
5
作者 YU Jie GUO WanChun +3 位作者 YANG Mu LUAN Yi TAO JinZhang ZHANG XiaoWei 《Science China Chemistry》 SCIE EI CAS 2014年第9期1211-1217,共7页
We synthesized hierarchical Polystyrene/Polyaniline@Au(PS/PANI@Au) catalysts through a seeded swelling polymerization and in-situ reduction procedure. PS/PANI@Au catalysts possess a core of PS as seed and template, a ... We synthesized hierarchical Polystyrene/Polyaniline@Au(PS/PANI@Au) catalysts through a seeded swelling polymerization and in-situ reduction procedure. PS/PANI@Au catalysts possess a core of PS as seed and template, a PANI shell with fibers and uniform gold nanoparticles on the surface. The configuration changes of the PANI chains resulting from the doping/ dedoping procedure led to various loading amounts of Au nanoparticles. Reduction of 4-nitrophenol was chosen as the probe reaction to evaluate the catalytic activity of supported Au nanocatalysts. The catalytic results indicated that dedoping treatment of the PS/PANI supports provides stronger coordinative ability to metal nanoparticles as well as more –N= groups, which results in a better catalytic performance towards the reduction of 4-nitrophenol. 展开更多
关键词 hierarchical PS/PANI supported gold catalyst reduction of 4-nitrophenol doping/dedoping treatment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部