Extraction of o-aminophenol (OAP) using trialkylphosphine oxide (TRPO) was studied with different diluents. The neutral OAP was extracted using TRPO under an equilibrium pH in the range of 6—7.5, and a maximum distri...Extraction of o-aminophenol (OAP) using trialkylphosphine oxide (TRPO) was studied with different diluents. The neutral OAP was extracted using TRPO under an equilibrium pH in the range of 6—7.5, and a maximum distribution coefficient occurred. It was confirmed that the pH value and the TRPO concentration are the key factors that affect dis-tribution coefficient. Nonpolar diluents could provide better extraction distribution coefficient for the extraction of OAP and the order is: kerosene >n-octanol >chloroform.展开更多
The cleavage of the alkoxy(Ar-O-R) ether bond present in anisole is an interesting hydrodeoxygenation(HDO) reaction, since this asymmetric group contains two different C–O bonds, Caryl–O or Calkyl–O, which could po...The cleavage of the alkoxy(Ar-O-R) ether bond present in anisole is an interesting hydrodeoxygenation(HDO) reaction, since this asymmetric group contains two different C–O bonds, Caryl–O or Calkyl–O, which could potentially cleave. Recent work on the HDO of anisole over Pt, Ru, and Fe catalysts has shown that a common phenoxy surface intermediate is formed on all three metals. The subsequent reaction path of this intermediate varies from metal to metal, depending on the metal oxophilicity. Over the less oxophilic Pt, phenol is the only primary product. By contrast, on the more oxophilic Fe catalyst, the sole primary product is benzene instead of phenol. On Ru, with intermediate oxophilicity, both benzene and phenol are primary products. In this contribution, we have investigated Rh catalysts of varying surface nanostructures. A combination of experimental measurements and computational calculations was used to explore the effects of varying metal coordination number, an additional parameter that can be used to control the oxophilicity of a metal. The results confirm that metal oxophilicity is a good descriptor for HDO performance of metal catalysts and it can be controlled via selection of metal type and/or metal extent of coordination. Small Rh metal clusters with low coordination metal sites are more active for the deoxygenation pathway but also quickly deactivated while large clusters with high coordination sites are more active toward hydrogenation and more stable.展开更多
基金Supported by the Educational Department of Henan Province (No.2004530001).
文摘Extraction of o-aminophenol (OAP) using trialkylphosphine oxide (TRPO) was studied with different diluents. The neutral OAP was extracted using TRPO under an equilibrium pH in the range of 6—7.5, and a maximum distribution coefficient occurred. It was confirmed that the pH value and the TRPO concentration are the key factors that affect dis-tribution coefficient. Nonpolar diluents could provide better extraction distribution coefficient for the extraction of OAP and the order is: kerosene >n-octanol >chloroform.
基金supported by the U.S.Department of Energy,DOE/EPSCOR(Grant DESC0004600)
文摘The cleavage of the alkoxy(Ar-O-R) ether bond present in anisole is an interesting hydrodeoxygenation(HDO) reaction, since this asymmetric group contains two different C–O bonds, Caryl–O or Calkyl–O, which could potentially cleave. Recent work on the HDO of anisole over Pt, Ru, and Fe catalysts has shown that a common phenoxy surface intermediate is formed on all three metals. The subsequent reaction path of this intermediate varies from metal to metal, depending on the metal oxophilicity. Over the less oxophilic Pt, phenol is the only primary product. By contrast, on the more oxophilic Fe catalyst, the sole primary product is benzene instead of phenol. On Ru, with intermediate oxophilicity, both benzene and phenol are primary products. In this contribution, we have investigated Rh catalysts of varying surface nanostructures. A combination of experimental measurements and computational calculations was used to explore the effects of varying metal coordination number, an additional parameter that can be used to control the oxophilicity of a metal. The results confirm that metal oxophilicity is a good descriptor for HDO performance of metal catalysts and it can be controlled via selection of metal type and/or metal extent of coordination. Small Rh metal clusters with low coordination metal sites are more active for the deoxygenation pathway but also quickly deactivated while large clusters with high coordination sites are more active toward hydrogenation and more stable.