The diffusion of C4-24 alkanes, aromatics and cycloalkanes in FAU and MFI zeolites were studied systemati- cally by molecular simulation. The basic data on diffusion energy barriers and the diffusion characteristics o...The diffusion of C4-24 alkanes, aromatics and cycloalkanes in FAU and MFI zeolites were studied systemati- cally by molecular simulation. The basic data on diffusion energy barriers and the diffusion characteristics of alkanes, cyclo- alkanes and aromatics in FAU and MFI zeolites were obtained. It was found out that the 12-member-ring openings between the two adjacent super cages limited the diffusion of hydrocarbons in FAU zeolites, and the hydrocarbon molecules diffused more easily in the intersections of MFI zeolite channels than in the straight channels between the intersections. It was more difficult for the molecules to diffuse in the sinusoidal channel of the MFI zeolite than in the straight channel because of the atoms at the comer of sinusoidal channel. The diffusion of three kinds of C6 alkanes was studied by gravity sorption method. The simulation results were well consistent with the experimental results, indicating that the simulation results were con- vincing.展开更多
To investigate characteristics of H isotope variation in long-chain n-alkanes (δDn-alkanes) from higher plants in surface soils under a single ecosystem, 12 samples from a basalt regolith were randomly collected fr...To investigate characteristics of H isotope variation in long-chain n-alkanes (δDn-alkanes) from higher plants in surface soils under a single ecosystem, 12 samples from a basalt regolith were randomly collected from Damaping in Wanquan County of Zhangjiakou in North China. Molecular distribution and C (δ^13Cn-alkanes) and H isotopes of long-chain n-alkanes, as well as C isotopes of TOC (δ^13CTOC), were analyzed. Both δ^13CTOC and δ^13Cn-alkanes values from four representative dominant long-chain n-alkanes (n-C27, n-C29, n-C31, n-C33) derived from terrestrial higher plants show minor variations among the 12 samples, indicating the major contributor is from local grasses with a uniform C3 photosynthetic pathway. In contrast, variations in δ^13Cn-alkanes values of the four long-chain n-alkanes are relatively large, with the more abundant homologs generally showing more negative δDn-alkanes values and less variation. However, variation of 〈30‰ among weighted averaged δDn-alkanes values of the four long-chain n-alkanes is not only less than that among δDn-alkanes values for different modern terrestrial C3 grasses from the specific locations, but also less than the literature values of δDn-alkanes of long-chain n-alkanes for single species over different seasons. Thus, because the sources of long-chain n-alkanes in surface soils and sediments are similarly from multiple individual plants, our results are significant in confirming that paleoclimatic, paleoenvironmental and paleohydrological information can be interpreted more accurately from δDn-alkanes values of long-chain n-alkanes from sediments, particularly terrestrial sediments with organic matter derived from in-situ plants.展开更多
基金the key Project of Chinese National Programs for Fundamental Research and Development (973 Program) (No.2010CB732301) for financial supports
文摘The diffusion of C4-24 alkanes, aromatics and cycloalkanes in FAU and MFI zeolites were studied systemati- cally by molecular simulation. The basic data on diffusion energy barriers and the diffusion characteristics of alkanes, cyclo- alkanes and aromatics in FAU and MFI zeolites were obtained. It was found out that the 12-member-ring openings between the two adjacent super cages limited the diffusion of hydrocarbons in FAU zeolites, and the hydrocarbon molecules diffused more easily in the intersections of MFI zeolite channels than in the straight channels between the intersections. It was more difficult for the molecules to diffuse in the sinusoidal channel of the MFI zeolite than in the straight channel because of the atoms at the comer of sinusoidal channel. The diffusion of three kinds of C6 alkanes was studied by gravity sorption method. The simulation results were well consistent with the experimental results, indicating that the simulation results were con- vincing.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40901055 and 40872111)the Key Program of Chinese Ministry of Education (Grant No. 109151)+1 种基金the National Basic Research Program of China (Grant No. 2010CB950202)the NSFC National Innovative Research Team Project (Grant No. 41021091)
文摘To investigate characteristics of H isotope variation in long-chain n-alkanes (δDn-alkanes) from higher plants in surface soils under a single ecosystem, 12 samples from a basalt regolith were randomly collected from Damaping in Wanquan County of Zhangjiakou in North China. Molecular distribution and C (δ^13Cn-alkanes) and H isotopes of long-chain n-alkanes, as well as C isotopes of TOC (δ^13CTOC), were analyzed. Both δ^13CTOC and δ^13Cn-alkanes values from four representative dominant long-chain n-alkanes (n-C27, n-C29, n-C31, n-C33) derived from terrestrial higher plants show minor variations among the 12 samples, indicating the major contributor is from local grasses with a uniform C3 photosynthetic pathway. In contrast, variations in δ^13Cn-alkanes values of the four long-chain n-alkanes are relatively large, with the more abundant homologs generally showing more negative δDn-alkanes values and less variation. However, variation of 〈30‰ among weighted averaged δDn-alkanes values of the four long-chain n-alkanes is not only less than that among δDn-alkanes values for different modern terrestrial C3 grasses from the specific locations, but also less than the literature values of δDn-alkanes of long-chain n-alkanes for single species over different seasons. Thus, because the sources of long-chain n-alkanes in surface soils and sediments are similarly from multiple individual plants, our results are significant in confirming that paleoclimatic, paleoenvironmental and paleohydrological information can be interpreted more accurately from δDn-alkanes values of long-chain n-alkanes from sediments, particularly terrestrial sediments with organic matter derived from in-situ plants.