Atkanesulfonate monooxygenase SsuD facilitates the desulfonation reaction of alkane sulfonates to release sulfite and corresponding aldehydes/ketones. Oxygen is activated by the reduced flavin. One oxygen atom is to f...Atkanesulfonate monooxygenase SsuD facilitates the desulfonation reaction of alkane sulfonates to release sulfite and corresponding aldehydes/ketones. Oxygen is activated by the reduced flavin. One oxygen atom is to fi'om water and the other oxygen atom is to from aldehydes/ketones. The oxidized flavin is regenerated after water is formed. The chemical biomimetic system was established according to the preliminary mechanism of alkanesulfonate monooxygenase and the cyclic mechanism was proposed for the formation ofaldehydes/ketones. Two oxygen atoms from the reduced flavin to form C(4a)-peroxy-flavin. The oxygen atom connected with C(4a) abstracts one electron from the neighbouring oxygen to transfer one oxygen atom to C1 ofalkanesulfonates and abstracts one hydrogen from C1 ofalkanesulfonates to break C 1-H bond. Hydroxy-flavin was produced by the above cyclic mechanism. Alkansulfonate monooxygenase SsuD does not directly involve in the reaction. It only supplies some comfortable environment to facilitate the target reactiorL展开更多
A kinetic model fitted by the empirical equation has been proposed to describe the liquid drainage behavior. Rate constants (kd) of liquid drainage equation could be obtained from the above empirical equation. In th...A kinetic model fitted by the empirical equation has been proposed to describe the liquid drainage behavior. Rate constants (kd) of liquid drainage equation could be obtained from the above empirical equation. In this paper, the stability of the colloidal gas aphrons (CGAs), the effect of concentrations of sodium dodecyl benzene sulphate (SDBS), dodecyl trimethylammonium bromide (HTAB) and polyoxyethylene sorbitol anhydride monolaurate(Tween-20), temperature, stirring speed, stirring time, and various kinds of salts on the kd of liquid drainage are further investigated. The results show that the Arrhenius equation can be successfully used to describe the relation between kd arid absolute temperature (T), and concentrations of surfactants, stirring speed, stirring time and salinities also have great effect on the kd. At last, the CGAs drainage mechanism is explained from analysis of the rate of liquid drainage as a function of time.展开更多
The effectiveness of using acoustical (sonochemical) reactor for degradation of linear alkylbenzen sulfonate (LAS) from aqueous solution was investigated. LASs are anionic surfactants, found in relatively high amo...The effectiveness of using acoustical (sonochemical) reactor for degradation of linear alkylbenzen sulfonate (LAS) from aqueous solution was investigated. LASs are anionic surfactants, found in relatively high amounts in domestic and industrial wastewaters. In this study, experiments on LAS solution were performed using methylene blue active substances (MBAS) method. The effectiveness of acoustical processor reactor for LAS degradation is evaluated with emphasis on the effect of treatment time and initial LAS concentration. Experiments were performed at initial concentrations of 0.2, 0.5, 0.8 and 1.0 mg/L, acoustic frequency of 130 kHz, applied power of 500 W and temperature of 18℃-20℃. At the conditions involved, LAS degradation was found to increase with increasing sonochemical time. In addition, as the concentration increased, the LAS degradation rate decreased in the acoustical processor reactor.展开更多
Photocatalytic reduction of 6-chloro-3-nitrotoluene-4-sulfonic acid (CNSA) was studied in UV-irradiated TiO2 suspensions in the presence of methanol and surfactants. A mixture of CNSA, TiO2, water, additives and surfa...Photocatalytic reduction of 6-chloro-3-nitrotoluene-4-sulfonic acid (CNSA) was studied in UV-irradiated TiO2 suspensions in the presence of methanol and surfactants. A mixture of CNSA, TiO2, water, additives and surfactants was put into a quartz glass reactor with a jacket, which was irradiated with a high pressure Hg lamp in the purging of nitrogen gas. With methanol, the conversion of CNSA increased from 7.7% to 34.6%. Three surfactants significantly promoted the photocatalytic reduction conversion in reduced order of sodium dodecylbenzenesulfonate (DBS), cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfate (SDS). In suspensions involving DBS and CTAB respectively, CNSA conversion increased in consistence with the adsorption ratio with methanol, but varied inversely with the adsorption ratio without methanol. But no obvious influence on the adsorption ratio was observed with or without methanol added when the SDS concentration was critical micelle concentration (cmc). The photocatalytic reduction of CNSA was enhanced in UV-irradiated TiO2 suspensions in the presence of methanol and surfactants. Methanol inhibited the recombination of photogenerated holes and electrons efficiently. Surfactants around 1 cmc led to the highest reduction conversion.展开更多
[Objective] This study was conducted to investigate the effect of laundry wastewater on the quality of river water and the dilution purification effect of river water on laundry wastewater. [Method] The effects of lau...[Objective] This study was conducted to investigate the effect of laundry wastewater on the quality of river water and the dilution purification effect of river water on laundry wastewater. [Method] The effects of laundry wastewater on the contents of total nitrogen(TN), total phosphorus(TP), suspended solids(SS), chemical oxygen demand(COD) and linear alkylbenzene sulfonic acid(LAS) were studied in 7 rivers of Shaoxing City. [Result](1) The contents of TN, TP, SS, COD and LAS increased by 92%, 99%, 340%, 351% and 923%, respectively, at the discharging moment of laundry wastewater; and(2) the five pollutional indexes significantly decreased over time, and especially 2 h after the discharge of laundry wastewater, compared with former the discharge of laundry wastewater, the contents of TN, TP, COD and LAS increased by 6%, 11%, 9% and13%, respectively,while the contents of SS still increased by 76%, i.e., SS required a longer time to achieve self-purification. [Conclusion] Laundry wastewater has some influence on thequality of river water, and the self-purification function of river water could effectively remove pollutants.展开更多
Surfactant enhanced remediation is thought to be an effective method for the remediation of soils polluted with hydrophoblc organic compounds. Desorption of polycyclic aromatic hydrocarbons (PAHs) from an abandoned ...Surfactant enhanced remediation is thought to be an effective method for the remediation of soils polluted with hydrophoblc organic compounds. Desorption of polycyclic aromatic hydrocarbons (PAHs) from an abandoned manufactured gas plant (MGP) soil was evaluated using four eluting agents including Triton X-100 (TX100), sodium dodecylbenzene sulfonate (SDBS), rhamnolipid water solution (RWS) and rhamnolipid fermentation broth (RFB). The weight solubilization ratios for acenaphthene and fluorene were in the order of TX100 〉 SDBS 〉 RWS 〉 RFB. The Sm value, which indicates the maximum amounts of surfactants adsorbed in the soil, was in the order of RWS 〉 RFB 〉 SDBS 〉 TX100. By using 8 g L-1 of TX100, SDBS and RWS and 100% of RFB, the T-PAHs removal for the MGP soil contaminated with 207.86 mg T-PAHs kg-1 dry soil was 48.0%, 45.7%, 1.9%, and 8.6%, respectively, while that decreased to 41.6%, 37%, 0.38%, and 1.3% for the soil contaminated with 3494.78 mg T-PAHs kg-1 dry soil. Only 8 g L-1 TX100 could remove all types of the 16 PAHs partly in the MGP soil, and the removal efficiencies of different PAHs ranged from 13% to 77.8%. The results of this study herein provide valuable information for the selection of TX100 surfactant for remediating PAH-contaminated soils in MGP.展开更多
Nowadays, genome editing tools are indispensable for studying gene function in order to increase our knowledge of biochemical processes and disease mechanisms. The extensive availability of mutagenesis and transgenesi...Nowadays, genome editing tools are indispensable for studying gene function in order to increase our knowledge of biochemical processes and disease mechanisms. The extensive availability of mutagenesis and transgenesis tools make Drosophila melanogaster an excellent model organism for geneticists. Early mutagenesis tools relied on chemical or physical methods,ethyl methane sulfonate(EMS) and X-rays respectively, to randomly alter DNA at a nucleotide or chromosomal level. Since the discovery of transposable elements and the availability of the complete fly genome, specific genome editing tools, such as P-elements, zinc-finger nucleases(ZFNs) and transcription activator-like effector nucleases(TALENs), have undergone rapid development. Currently, one of the leading and most effective contemporary tools is the CRISPR-cas9 system made popular because of its low cost, effectiveness, specificity and simplicity of use. This review briefly addresses the most commonly used mutagenesis and transgenesis tools in Drosophila, followed by an in-depth review of the multipurpose CRISPR-Cas9 system and its current applications.展开更多
文摘Atkanesulfonate monooxygenase SsuD facilitates the desulfonation reaction of alkane sulfonates to release sulfite and corresponding aldehydes/ketones. Oxygen is activated by the reduced flavin. One oxygen atom is to fi'om water and the other oxygen atom is to from aldehydes/ketones. The oxidized flavin is regenerated after water is formed. The chemical biomimetic system was established according to the preliminary mechanism of alkanesulfonate monooxygenase and the cyclic mechanism was proposed for the formation ofaldehydes/ketones. Two oxygen atoms from the reduced flavin to form C(4a)-peroxy-flavin. The oxygen atom connected with C(4a) abstracts one electron from the neighbouring oxygen to transfer one oxygen atom to C1 ofalkanesulfonates and abstracts one hydrogen from C1 ofalkanesulfonates to break C 1-H bond. Hydroxy-flavin was produced by the above cyclic mechanism. Alkansulfonate monooxygenase SsuD does not directly involve in the reaction. It only supplies some comfortable environment to facilitate the target reactiorL
基金Supported by the Eleventh Five Year National Key Technology R&D Program (2008BAE58B01)New Century Excellent Talents of Ministry of Education (NCET-07-0577),the People’s Republic of China
文摘A kinetic model fitted by the empirical equation has been proposed to describe the liquid drainage behavior. Rate constants (kd) of liquid drainage equation could be obtained from the above empirical equation. In this paper, the stability of the colloidal gas aphrons (CGAs), the effect of concentrations of sodium dodecyl benzene sulphate (SDBS), dodecyl trimethylammonium bromide (HTAB) and polyoxyethylene sorbitol anhydride monolaurate(Tween-20), temperature, stirring speed, stirring time, and various kinds of salts on the kd of liquid drainage are further investigated. The results show that the Arrhenius equation can be successfully used to describe the relation between kd arid absolute temperature (T), and concentrations of surfactants, stirring speed, stirring time and salinities also have great effect on the kd. At last, the CGAs drainage mechanism is explained from analysis of the rate of liquid drainage as a function of time.
基金Project (No. 85-01-46-3401) supported by the Medical Sciences/ University of Tehran, I.R. Iran
文摘The effectiveness of using acoustical (sonochemical) reactor for degradation of linear alkylbenzen sulfonate (LAS) from aqueous solution was investigated. LASs are anionic surfactants, found in relatively high amounts in domestic and industrial wastewaters. In this study, experiments on LAS solution were performed using methylene blue active substances (MBAS) method. The effectiveness of acoustical processor reactor for LAS degradation is evaluated with emphasis on the effect of treatment time and initial LAS concentration. Experiments were performed at initial concentrations of 0.2, 0.5, 0.8 and 1.0 mg/L, acoustic frequency of 130 kHz, applied power of 500 W and temperature of 18℃-20℃. At the conditions involved, LAS degradation was found to increase with increasing sonochemical time. In addition, as the concentration increased, the LAS degradation rate decreased in the acoustical processor reactor.
基金Supported by Tianjin Science and Technology Committee (No. 033604711)Science and Technology Foundation of Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD) (No. 03-2-064)
文摘Photocatalytic reduction of 6-chloro-3-nitrotoluene-4-sulfonic acid (CNSA) was studied in UV-irradiated TiO2 suspensions in the presence of methanol and surfactants. A mixture of CNSA, TiO2, water, additives and surfactants was put into a quartz glass reactor with a jacket, which was irradiated with a high pressure Hg lamp in the purging of nitrogen gas. With methanol, the conversion of CNSA increased from 7.7% to 34.6%. Three surfactants significantly promoted the photocatalytic reduction conversion in reduced order of sodium dodecylbenzenesulfonate (DBS), cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfate (SDS). In suspensions involving DBS and CTAB respectively, CNSA conversion increased in consistence with the adsorption ratio with methanol, but varied inversely with the adsorption ratio without methanol. But no obvious influence on the adsorption ratio was observed with or without methanol added when the SDS concentration was critical micelle concentration (cmc). The photocatalytic reduction of CNSA was enhanced in UV-irradiated TiO2 suspensions in the presence of methanol and surfactants. Methanol inhibited the recombination of photogenerated holes and electrons efficiently. Surfactants around 1 cmc led to the highest reduction conversion.
基金Supported by Natural Science Foundation of China(31500321)Scientific Research Foundation of Shaoxing University(20145024)
文摘[Objective] This study was conducted to investigate the effect of laundry wastewater on the quality of river water and the dilution purification effect of river water on laundry wastewater. [Method] The effects of laundry wastewater on the contents of total nitrogen(TN), total phosphorus(TP), suspended solids(SS), chemical oxygen demand(COD) and linear alkylbenzene sulfonic acid(LAS) were studied in 7 rivers of Shaoxing City. [Result](1) The contents of TN, TP, SS, COD and LAS increased by 92%, 99%, 340%, 351% and 923%, respectively, at the discharging moment of laundry wastewater; and(2) the five pollutional indexes significantly decreased over time, and especially 2 h after the discharge of laundry wastewater, compared with former the discharge of laundry wastewater, the contents of TN, TP, COD and LAS increased by 6%, 11%, 9% and13%, respectively,while the contents of SS still increased by 76%, i.e., SS required a longer time to achieve self-purification. [Conclusion] Laundry wastewater has some influence on thequality of river water, and the self-purification function of river water could effectively remove pollutants.
基金Supported by the National High Technology Research and Development Program(863 Program)of China(No.2012AA06A201)the Cooperation Program of the Beijing Branch of Chinese Academy of Sciences and the Beijing Academy of Science and Technology of China(No.PXM2010-178203-096006)
文摘Surfactant enhanced remediation is thought to be an effective method for the remediation of soils polluted with hydrophoblc organic compounds. Desorption of polycyclic aromatic hydrocarbons (PAHs) from an abandoned manufactured gas plant (MGP) soil was evaluated using four eluting agents including Triton X-100 (TX100), sodium dodecylbenzene sulfonate (SDBS), rhamnolipid water solution (RWS) and rhamnolipid fermentation broth (RFB). The weight solubilization ratios for acenaphthene and fluorene were in the order of TX100 〉 SDBS 〉 RWS 〉 RFB. The Sm value, which indicates the maximum amounts of surfactants adsorbed in the soil, was in the order of RWS 〉 RFB 〉 SDBS 〉 TX100. By using 8 g L-1 of TX100, SDBS and RWS and 100% of RFB, the T-PAHs removal for the MGP soil contaminated with 207.86 mg T-PAHs kg-1 dry soil was 48.0%, 45.7%, 1.9%, and 8.6%, respectively, while that decreased to 41.6%, 37%, 0.38%, and 1.3% for the soil contaminated with 3494.78 mg T-PAHs kg-1 dry soil. Only 8 g L-1 TX100 could remove all types of the 16 PAHs partly in the MGP soil, and the removal efficiencies of different PAHs ranged from 13% to 77.8%. The results of this study herein provide valuable information for the selection of TX100 surfactant for remediating PAH-contaminated soils in MGP.
基金supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of the People’s Republic of China (2015BAI09B03, 2016YFE0113700)the National Natural Science Foundation of China (31371496, 31571320)the National Basic Research Program (2013CB35102)
文摘Nowadays, genome editing tools are indispensable for studying gene function in order to increase our knowledge of biochemical processes and disease mechanisms. The extensive availability of mutagenesis and transgenesis tools make Drosophila melanogaster an excellent model organism for geneticists. Early mutagenesis tools relied on chemical or physical methods,ethyl methane sulfonate(EMS) and X-rays respectively, to randomly alter DNA at a nucleotide or chromosomal level. Since the discovery of transposable elements and the availability of the complete fly genome, specific genome editing tools, such as P-elements, zinc-finger nucleases(ZFNs) and transcription activator-like effector nucleases(TALENs), have undergone rapid development. Currently, one of the leading and most effective contemporary tools is the CRISPR-cas9 system made popular because of its low cost, effectiveness, specificity and simplicity of use. This review briefly addresses the most commonly used mutagenesis and transgenesis tools in Drosophila, followed by an in-depth review of the multipurpose CRISPR-Cas9 system and its current applications.