This work is focused on developing AA2124/4 wt.%B4 C nano-composite coatings on Ti-6 A1-4 V using friction surfacing to improve the wear resistance. The composite was produced using conventional stir casting method an...This work is focused on developing AA2124/4 wt.%B4 C nano-composite coatings on Ti-6 A1-4 V using friction surfacing to improve the wear resistance. The composite was produced using conventional stir casting method and coatings were laid using an indigenously-developed friction surfacing machine. The rotational speed of the mechtrode was varied. The microstructure of the composite coating was observed using conventional and advanced microscopic techniques. The sliding wear behavior was evaluated using a pin-on-disc apparatus. The coating geometry(thickness and width) increased with increased rotational speed. The interface was straight without thick intermetallic layer. Homogenous distribution of nano B4C particles and extremely fine grains was observed in the composite coating. The interfacial bonding between the aluminum matrix and B4C particles was excellent. The composite coating improved the wear resistance of the titanium alloy substrate due to the reduction in effective contact area,lower coefficient of friction and excellent interfacial bonding.展开更多
This work aims to evaluate the feasibility of the fabrication of nanostructured Cu/Al/Ag multi-layered composites by accumulative roll bonding(ARB),and to analyze the tensile properties and electrical conductivity of ...This work aims to evaluate the feasibility of the fabrication of nanostructured Cu/Al/Ag multi-layered composites by accumulative roll bonding(ARB),and to analyze the tensile properties and electrical conductivity of the produced composites.A theoretical model using strengthening mechanisms and some structural parameters extracted from X-ray diffraction is also developed to predict the tensile strength of the composites.It was found that by progression of ARB,the experimental and calculated tensile strengths are enhanced,reach a maximum of about 450 and 510 MPa at the fifth cycle of ARB,respectively and then are reduced.The electrical conductivity decreased slightly by increasing the number of ARB cycles at initial ARB cycles,but the decrease was intensified at the final ARB cycles.In conclusion,the merit of ARB to fabricate this type of multi-layered nanocomposites and the accuracy of the developed model to predict tensile strength were realized.展开更多
基金Department of Science and Technology [DST-WOS-A, No.SR/WOS-A/ET-1093/2015 (G)] for funding the project
文摘This work is focused on developing AA2124/4 wt.%B4 C nano-composite coatings on Ti-6 A1-4 V using friction surfacing to improve the wear resistance. The composite was produced using conventional stir casting method and coatings were laid using an indigenously-developed friction surfacing machine. The rotational speed of the mechtrode was varied. The microstructure of the composite coating was observed using conventional and advanced microscopic techniques. The sliding wear behavior was evaluated using a pin-on-disc apparatus. The coating geometry(thickness and width) increased with increased rotational speed. The interface was straight without thick intermetallic layer. Homogenous distribution of nano B4C particles and extremely fine grains was observed in the composite coating. The interfacial bonding between the aluminum matrix and B4C particles was excellent. The composite coating improved the wear resistance of the titanium alloy substrate due to the reduction in effective contact area,lower coefficient of friction and excellent interfacial bonding.
文摘This work aims to evaluate the feasibility of the fabrication of nanostructured Cu/Al/Ag multi-layered composites by accumulative roll bonding(ARB),and to analyze the tensile properties and electrical conductivity of the produced composites.A theoretical model using strengthening mechanisms and some structural parameters extracted from X-ray diffraction is also developed to predict the tensile strength of the composites.It was found that by progression of ARB,the experimental and calculated tensile strengths are enhanced,reach a maximum of about 450 and 510 MPa at the fifth cycle of ARB,respectively and then are reduced.The electrical conductivity decreased slightly by increasing the number of ARB cycles at initial ARB cycles,but the decrease was intensified at the final ARB cycles.In conclusion,the merit of ARB to fabricate this type of multi-layered nanocomposites and the accuracy of the developed model to predict tensile strength were realized.