Tungsten inert gas (TIG) welded joints for 2219-T87 aluminum alloy are often used in the fuel tanks of large launch vehicles. Because of the massive loads these vehicles carry, dealing with weld reinforcement on TIG...Tungsten inert gas (TIG) welded joints for 2219-T87 aluminum alloy are often used in the fuel tanks of large launch vehicles. Because of the massive loads these vehicles carry, dealing with weld reinforcement on TIG joints represents an important issue in their manufacturing and strength evaluation. Experimental and numerical simulation methods were used to investigate the effects of weld toe shape and weld toe position on the tensile behavior and mechanical properties of these joints. The simulation results indicated that the relative difference in elongation could be as large as 96.9% caused by the difference in weld toe shape. The joints with weld toes located in the weld metal or in the partially melted zone (PMZ) exhibited larger elongation than joints with weld toes located at the juncture of the weld metal and the PMZ.展开更多
Numerical simulation and experimental methods were used to investigate the effects of weld penetration on tensile properties of 2219 aluminum alloy tungsten inert gas(TIG)welded joints.The results show that when other...Numerical simulation and experimental methods were used to investigate the effects of weld penetration on tensile properties of 2219 aluminum alloy tungsten inert gas(TIG)welded joints.The results show that when other geometric parameters are consistent,within a certain range,the deeper the weld penetration of the capping weld is,the lower the tensile strength of the j oint is.The deeper weld penetration of the capping weld can cause the more concentrated stress at the weld toe and the joint is more likely to crack accordingly.Based on necessary assumptions,a model for analyzing the mathematical relation between the weld penetration of the capping weld and the tensile strength of the joint was proposed to validate the experimental results. The decrease of weld penetration of capping weld can be controlled by decreasing welding current,helium content or increasing welding voltage.展开更多
文摘Tungsten inert gas (TIG) welded joints for 2219-T87 aluminum alloy are often used in the fuel tanks of large launch vehicles. Because of the massive loads these vehicles carry, dealing with weld reinforcement on TIG joints represents an important issue in their manufacturing and strength evaluation. Experimental and numerical simulation methods were used to investigate the effects of weld toe shape and weld toe position on the tensile behavior and mechanical properties of these joints. The simulation results indicated that the relative difference in elongation could be as large as 96.9% caused by the difference in weld toe shape. The joints with weld toes located in the weld metal or in the partially melted zone (PMZ) exhibited larger elongation than joints with weld toes located at the juncture of the weld metal and the PMZ.
基金Project(U1637601)supported by the Joint Funds of the National Natural Science Foundation of China
文摘Numerical simulation and experimental methods were used to investigate the effects of weld penetration on tensile properties of 2219 aluminum alloy tungsten inert gas(TIG)welded joints.The results show that when other geometric parameters are consistent,within a certain range,the deeper the weld penetration of the capping weld is,the lower the tensile strength of the j oint is.The deeper weld penetration of the capping weld can cause the more concentrated stress at the weld toe and the joint is more likely to crack accordingly.Based on necessary assumptions,a model for analyzing the mathematical relation between the weld penetration of the capping weld and the tensile strength of the joint was proposed to validate the experimental results. The decrease of weld penetration of capping weld can be controlled by decreasing welding current,helium content or increasing welding voltage.