Pelletization is one of useful processes for the agglomeration of iron ore or concentrates. However, manganese ore fines are mainly agglomerated by sintering due to its high combined water which adversely affects the ...Pelletization is one of useful processes for the agglomeration of iron ore or concentrates. However, manganese ore fines are mainly agglomerated by sintering due to its high combined water which adversely affects the roasting performance of pellets. In this work, high pressure roll grinding(HPRG) process and optimization of temperature elevation system were investigated to improve the strength of fired manganese ore pellets. It is shown that the manganese ore possesses good ballability after being pretreated by HPRG twice, and good green balls were produced under the conditions of blending 2.0% bentonite in the feed, balling for 7 min at 16.00% moisture. High quality roasted pellets with the compressive strength of 2711 N per pellet were manufactured through preheating at 1050 °C for 10 min and firing at 1335 °C for 15 min by controlling the cracks formation. The fired manganese pellets keep the strength by the solid interconnection of recrystallized pyrolusite grains and the binding of manganite liquid phase which filled the pores and clearance among minerals. The product pellets contain high Mn grade and low impurities, and can be used to smelt ferromanganese, which provides a possible way to use imported manganese ore fines containing high combined water to produce high value ferromanganese.展开更多
The effects of magnetic field intensity, roasting temperature and roasting time on digestion rate and settling performance of bauxite with different iron contents were investigated systematically. The results indicate...The effects of magnetic field intensity, roasting temperature and roasting time on digestion rate and settling performance of bauxite with different iron contents were investigated systematically. The results indicate that such magnetic treatment can profoundly change the microstructure and digestion performance of bauxite. For the two samples carrying different iron contents, phase transformation of the aluminum oxide phase proceeds faster in the high iron bauxite than the low one. The optimal pretreatment conditions of low iron bauxite are roasting temperature 550 ℃ and magnetic field intensity 6 T, while for high iron bauxite are 500 ℃ and 9 T. The digestion rate of alumina can reach 95% and 92% at digestion temperature of 190 ℃ and 250 ℃. The settling performances of roasted ore by intense magnetic field after digestion are enhanced through pretreatment.展开更多
基金Project(2011GH561685)supported by the China Torch Program
文摘Pelletization is one of useful processes for the agglomeration of iron ore or concentrates. However, manganese ore fines are mainly agglomerated by sintering due to its high combined water which adversely affects the roasting performance of pellets. In this work, high pressure roll grinding(HPRG) process and optimization of temperature elevation system were investigated to improve the strength of fired manganese ore pellets. It is shown that the manganese ore possesses good ballability after being pretreated by HPRG twice, and good green balls were produced under the conditions of blending 2.0% bentonite in the feed, balling for 7 min at 16.00% moisture. High quality roasted pellets with the compressive strength of 2711 N per pellet were manufactured through preheating at 1050 °C for 10 min and firing at 1335 °C for 15 min by controlling the cracks formation. The fired manganese pellets keep the strength by the solid interconnection of recrystallized pyrolusite grains and the binding of manganite liquid phase which filled the pores and clearance among minerals. The product pellets contain high Mn grade and low impurities, and can be used to smelt ferromanganese, which provides a possible way to use imported manganese ore fines containing high combined water to produce high value ferromanganese.
基金Projects(U1202274,51004033,51204040,50974035)supported by the National Natural Science Foundation of ChinaProjects(2010AA03A405,2012AA062303)supported by the National High Technology Research and Development Program(863 Prograam)of ChinaProject(N100302005)supported by the Fundamental Research Funds for the Central Universities,China
文摘The effects of magnetic field intensity, roasting temperature and roasting time on digestion rate and settling performance of bauxite with different iron contents were investigated systematically. The results indicate that such magnetic treatment can profoundly change the microstructure and digestion performance of bauxite. For the two samples carrying different iron contents, phase transformation of the aluminum oxide phase proceeds faster in the high iron bauxite than the low one. The optimal pretreatment conditions of low iron bauxite are roasting temperature 550 ℃ and magnetic field intensity 6 T, while for high iron bauxite are 500 ℃ and 9 T. The digestion rate of alumina can reach 95% and 92% at digestion temperature of 190 ℃ and 250 ℃. The settling performances of roasted ore by intense magnetic field after digestion are enhanced through pretreatment.