期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
粉煤灰转相焙烧过程铝硅碱溶活性探究 被引量:1
1
作者 李达 蒋训雄 +3 位作者 汪胜东 赵峰 蒋伟 刘巍 《有色金属工程》 CAS 北大核心 2019年第7期33-38,共6页
粉煤灰主要成分为氧化铝和二氧化硅,其铝硅比较低,传统拜耳法难以实现铝硅分离,在碱性体系下需对粉煤灰中的铝、硅组元进行改性与处理,提高其中铝、硅组元的碱溶活性差异,从而实现铝硅分离的目的。以内蒙古某地区高铝粉煤灰为研究对象,... 粉煤灰主要成分为氧化铝和二氧化硅,其铝硅比较低,传统拜耳法难以实现铝硅分离,在碱性体系下需对粉煤灰中的铝、硅组元进行改性与处理,提高其中铝、硅组元的碱溶活性差异,从而实现铝硅分离的目的。以内蒙古某地区高铝粉煤灰为研究对象,通过硫酸固相转化手段将铝硅酸盐解离,解离后的铝、硅组元混合相通过转相焙烧的方式进行碱溶活性调控,以实现铝、硅组元碱溶初步分离的目的。结果表明,随着焙烧温度的升高,焙砂中的非晶态氧化铝有向过渡相氧化铝转变的趋势,碱溶活性逐渐降低,非晶态二氧化硅的结构未有明显变化趋势,其碱溶活性也未发生明显变化;在焙烧温度950℃、焙烧时间60 min条件下和碱溶温度95℃、时间30 min、Na 2O浓度38.75 g/L、液固比10∶1的溶出条件下,二氧化硅溶出率达到73%以上,氧化铝溶出率不到2%。 展开更多
关键词 粉煤灰 焙烧 氧化铝 碱溶活性
下载PDF
铝灰中有害元素脱除及钙化转相制备铝酸钙 被引量:1
2
作者 谢明壮 单迪 +3 位作者 韩金珊 吴泽港 刘风琴 赵洪亮 《中国冶金》 CAS CSCD 北大核心 2023年第6期115-121,共7页
铝灰是铝工业产生的危险固体废弃物,其中含有氯、氮等有害元素和较多的氧化铝,具备危废和资源的双重属性。为了实现铝灰中有害物质的脱除和氧化铝资源的回收利用,基于铝灰化学成分及物相组成分析,开展铝灰高温脱氮除氯及钙化转相制备铝... 铝灰是铝工业产生的危险固体废弃物,其中含有氯、氮等有害元素和较多的氧化铝,具备危废和资源的双重属性。为了实现铝灰中有害物质的脱除和氧化铝资源的回收利用,基于铝灰化学成分及物相组成分析,开展铝灰高温脱氮除氯及钙化转相制备铝酸钙试验,研究铝灰制备铝酸钙反应过程热力学、配比及温度对产物物相的影响。研究结果表明,在1 300℃下焙烧1 h,铝灰中的有害组分在高温下得以有效脱除,氮和氯元素脱除率分别为98.16%和99.33%;当物料Al_(2)O_(3)和CaO的质量比为0.36~1.79、控制焙烧温度为1 320℃时,可获得以7Al_(2)O_(3)·12CaO为主要物相的低熔点铝酸钙产品,所得到的铝酸钙产品可满足普通型炼钢用预熔型铝酸钙产品质量标准要求。 展开更多
关键词 铝灰 焙烧转相 铝酸钙 脱毒 资源化利用
原文传递
Reaction mechanism of roasting Zn_2SiO_4 using NaOH 被引量:4
3
作者 Xiao-yi SHEN Hong-mei SHAO +3 位作者 Hui-min GU Bing CHEN Yu-chun ZHAI Pei-hua MA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第9期1878-1886,共9页
The reaction kinetics of roasting zinc silicate using NaOH was investigated.The orthogonal test was employed to optimize the reaction conditions and the optimized reaction conditions were as follows:molar ratio of NaO... The reaction kinetics of roasting zinc silicate using NaOH was investigated.The orthogonal test was employed to optimize the reaction conditions and the optimized reaction conditions were as follows:molar ratio of NaOH to Zn2SiO4 of 16:1,reaction temperature of 550°C,and reaction time of 2.5 h.In order to ascertain the phases transformation and reaction processes of zinc oxide and silica,the XRD phase analysis was used to analyze the phases of these specimens roasted at different temperatures.The final phases of the specimen roasted at 600°C were Na2ZnO2,Na4SiO4,Na2ZnSiO4 and NaOH.The reaction kinetic equation of roasting was determined by the shrinking unreacted core model.Aiming to investigate the reaction mechanism,two control models of reaction rate were applied:chemical reaction at the particle surface and diffusion through the product layer.The results indicated that the diffusion through the product layer model described the reaction process well.The apparent activation energy of the roasting was 19.77 kJ/mol. 展开更多
关键词 reaction mechanism KINETICS Zn2SiO4 NaOH roasting reaction process phase transformation
下载PDF
Application of suspension magnetization roasting as technology for high-efficiency separation of valuable iron minerals from high-iron bauxite 被引量:8
4
作者 Ruo-feng WANG Shuai YUAN +1 位作者 Peng GAO Yan-jun LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第7期2391-2402,共12页
A technology for suspension magnetization roasting−magnetic separation was proposed to separate iron minerals for recovery.The optimum parameters were as follows:a roasting temperature of 650℃,a roasting time of 20 m... A technology for suspension magnetization roasting−magnetic separation was proposed to separate iron minerals for recovery.The optimum parameters were as follows:a roasting temperature of 650℃,a roasting time of 20 min,a CO concentration of 20%,and particles with a size less than 37μm accounting for 67.14%of the roasted product.The total iron content and iron recovery of the magnetic concentrate were 56.71%and 90.50%,respectively.The phase transformation,magnetic transition,and microstructure evolution were systematically characterized through iron chemical phase analysis,X-ray diffraction,vibrating sample magnetometry,X-ray photoelectron spectroscopy,and transmission electron microscopy.The results demonstrated the transformation of hematite to magnetite,with the iron content in magnetite increasing from 0.41%in the raw ore to 91.47%in the roasted product. 展开更多
关键词 high-iron bauxite suspension magnetization roasting comprehensive utilization magnetic separation phase transformation
下载PDF
Siderite pyrolysis in suspension roasting:An in-situ study on kinetics,phase transformation,and product properties 被引量:3
5
作者 ZHANG Qi SUN Yong-sheng +2 位作者 QIN Yong-hong GAO Peng YUAN Shuai 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第6期1749-1760,共12页
Siderite,as an abundant iron ore,has not been effectively utilized,with a low utilization rate.In this study,the in-situ kinetics and mechanism of siderite during suspension magnetization roasting(SMR)were investigate... Siderite,as an abundant iron ore,has not been effectively utilized,with a low utilization rate.In this study,the in-situ kinetics and mechanism of siderite during suspension magnetization roasting(SMR)were investigated to improve the selective conversion of siderite to magnetite and CO,enriching the theoretical system of green SMR using siderite as a reductant.According to the gas products analyses,the peak value of the reaction rate increased with increasing temperature,and its curves presented the feature of an early peak and long tail.The mechanism function of the siderite pyrolysis was the contraction sphere model(R_(3)):f(α)=3(1−α)2/3;E_(α)was 46.4653 kJ/mol;A was 0.5938 s^(−1);the kinetics equation was k=0.5938exp[−46.4653/(RT)].The in-situ HT-XRD results indicated that siderite was converted into magnetite and wüstite that exhibited a good crystallinity in SMR under a N_(2) atmosphere.At 620℃,the saturation magnetization(M_(s)),remanence magnetization(Mr),and coercivity(Hc)of the product peaked at 53.63×10^(-3)A·m^(2)/g,10.23×10^(-3)A·m^(2)/g,and 12.40×10^(3)A/m,respectively.Meanwhile,the initial particles with a smooth surface were transformed into particles with a porous and loose structure in the roasting process,which would contribute to reducing the grinding cost. 展开更多
关键词 SIDERITE suspension magnetization roasting reaction kinetics phase transformation magnetic transition microstructure evolution
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部