This paper describes the scanning assembly principle and construction of scanning assembly sample.The factors that affect assembly accuracy are analyzed.There are two steps in CCD focal plane scanning assembly.The fir...This paper describes the scanning assembly principle and construction of scanning assembly sample.The factors that affect assembly accuracy are analyzed.There are two steps in CCD focal plane scanning assembly.The first is rough assembly,and the second is accurate assembly.In this paper,the moiré fringe is introduced in judging assembly accuracy directly and accurately.The equation for optical transmission characteristics of CCD Moiré fringes is presented.The measurement of Moiré fringes can be completed when some conditions are satisfied.2D_assembly error can be obtained by using digital correlation filtering technique.Finally,the result of focal plane scanning assembly is presented.The result is in good accordance with theory.展开更多
A new 128×128 element PtSi Schottky barrier infrared image sensor with ITCCD readout structure and PtSi thin film optical cavity detector structure has been fabricated,which has 50μm×50 μm pixels,a fill fa...A new 128×128 element PtSi Schottky barrier infrared image sensor with ITCCD readout structure and PtSi thin film optical cavity detector structure has been fabricated,which has 50μm×50 μm pixels,a fill factor of 40 percent,the nonuniformity of 5% or less and the dynamic range of over or equal to 50 dB.The noise equivalent temperature difference is 0.2 K with f/1.0 optics at 300 K background. In this paper,the principle of operation,design consideration and fabrication technology for the device are described.展开更多
In this paper, a CMOS image sensor(CIS) is proposed, which can accomplish both decorrelation and entropy coding of image compression directly on the focal plane. The design is based on predictive coding for image deco...In this paper, a CMOS image sensor(CIS) is proposed, which can accomplish both decorrelation and entropy coding of image compression directly on the focal plane. The design is based on predictive coding for image decorrelation. The predictions are performed in analog domain by 2×2 pixel units. Both the prediction residuals and original pixel values are quantized and encoded in parallel. Since the residuals have a peak distribution around zero,the output codewords can be replaced by the valid part of the residuals' binary mode. The compressed bit stream is accessible directly at the output of CIS without extra disposition. Simulation results show that the proposed approach achieves a compression rate of 2. 2 and PSNR of 51 on different test images.展开更多
文摘This paper describes the scanning assembly principle and construction of scanning assembly sample.The factors that affect assembly accuracy are analyzed.There are two steps in CCD focal plane scanning assembly.The first is rough assembly,and the second is accurate assembly.In this paper,the moiré fringe is introduced in judging assembly accuracy directly and accurately.The equation for optical transmission characteristics of CCD Moiré fringes is presented.The measurement of Moiré fringes can be completed when some conditions are satisfied.2D_assembly error can be obtained by using digital correlation filtering technique.Finally,the result of focal plane scanning assembly is presented.The result is in good accordance with theory.
文摘A new 128×128 element PtSi Schottky barrier infrared image sensor with ITCCD readout structure and PtSi thin film optical cavity detector structure has been fabricated,which has 50μm×50 μm pixels,a fill factor of 40 percent,the nonuniformity of 5% or less and the dynamic range of over or equal to 50 dB.The noise equivalent temperature difference is 0.2 K with f/1.0 optics at 300 K background. In this paper,the principle of operation,design consideration and fabrication technology for the device are described.
基金Supported by the National Natural Science Foundation of China(No.61036004)Tianjin Research Program of Application Foundation and Advanced Technology(No.13JCQNJC00600)
文摘In this paper, a CMOS image sensor(CIS) is proposed, which can accomplish both decorrelation and entropy coding of image compression directly on the focal plane. The design is based on predictive coding for image decorrelation. The predictions are performed in analog domain by 2×2 pixel units. Both the prediction residuals and original pixel values are quantized and encoded in parallel. Since the residuals have a peak distribution around zero,the output codewords can be replaced by the valid part of the residuals' binary mode. The compressed bit stream is accessible directly at the output of CIS without extra disposition. Simulation results show that the proposed approach achieves a compression rate of 2. 2 and PSNR of 51 on different test images.