期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于VAE-GAN和FLCNN的不均衡样本轴承故障诊断方法 被引量:10
1
作者 张永宏 张中洋 +3 位作者 赵晓平 王丽华 邵凡 吕凯扬 《振动与冲击》 EI CSCD 北大核心 2022年第9期199-209,共11页
针对滚动轴承故障诊断中样本分布不均衡引起的模型泛化能力差、诊断精度低的问题,从两个方面展开研究:(1)故障样本增广,提出结合变分自编码器(VAE)和生成对抗网络(GAN)的VAE-GAN样本增广模型;(2)改进分类算法,提出基于焦点损失(FL)和卷... 针对滚动轴承故障诊断中样本分布不均衡引起的模型泛化能力差、诊断精度低的问题,从两个方面展开研究:(1)故障样本增广,提出结合变分自编码器(VAE)和生成对抗网络(GAN)的VAE-GAN样本增广模型;(2)改进分类算法,提出基于焦点损失(FL)和卷积神经网络(CNN)的FLCNN(focal loss and convolutional neural network)样本分类模型。在此基础上,将VAE-GAN和FLCNN融合,构建VAE-GAN+FLCNN轴承故障诊断模型。首先,将样本量少的故障类输入VAE-GAN模型,通过交替训练编码网络、生成网络和判别网络,学习出真实故障样本的数据分布,从而实现故障样本的增广;然后用增广后的数据样本训练FLCNN分类模型,完成轴承故障识别。试验对比结果表明,所提方法能够有效提升样本不均衡条件下的轴承故障诊断效果,拥有更高的Recall值和F1-score值。 展开更多
关键词 滚动轴承 变分自编码器(VAE) 生成对抗网络(GAN) 焦点损失(fl) 故障诊断
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部