Dynamic effects of NO2--N accumulation were discussed owing to temperature.In different temperature,a series of vmax and Ks were found considering the relation between the temperature and rate of ammonia nitrogen tran...Dynamic effects of NO2--N accumulation were discussed owing to temperature.In different temperature,a series of vmax and Ks were found considering the relation between the temperature and rate of ammonia nitrogen transforming into NO2--N.The kinetics models,which reflected the conditions of ammonia nitrogen transforming into NO2--N in the treatment process of the coking wastewater,were built up.The characteristic coefficient temperature was determined according to Arrhenius.展开更多
A series of highly cross-linked polymeric ionic liquids P[Ci(Vim)_2][Cl]_2(i = 2,3,4,5,6) were synthesized by quaternization reaction and polymerization,and used to remove nitrogen compounds from oils.The polymeric io...A series of highly cross-linked polymeric ionic liquids P[Ci(Vim)_2][Cl]_2(i = 2,3,4,5,6) were synthesized by quaternization reaction and polymerization,and used to remove nitrogen compounds from oils.The polymeric ionic liquids P[Ci(Vim)_2][H_2PO_4]_2(i = 2,3,4,5,6) were then obtained via ion exchange.The structures of P[C_4(Vim)_2][Cl]_2 and P[C_4(Vim)_2][H_2PO_4]_2 were characterized by Fourier transform infrared(FT-IR) spectroscopy,energy dispersive spectrometry(EDS),N2 adsorption-desorption isotherm measurements,scanning electron microscopy(SEM),thermogravimetric analysis and differential scanning calorimetry(TG/DSC).The removal of nitrogen compounds was characterized by pyridineFTIR spectrometry.The results indicated that P[C_4(Vim)_2][H_2PO_4]_2 with an average pore size of 19.23 nm and a specific surface area of 11.78 m^2/g was efficient for the removal of nitrogen compounds,and exhibited good thermal stability.The adsorption rate in the simulated oil reached 93.8% when using a polymeric ionic liquid P[C_4(Vim)_2][H_2PO_4]_2 to oil ratio of 0.04 and a temperature of 313 K.The nitrogen removal rate from the coal-tar diesel fraction achieved by P[C_4(Vim)_2][H_2PO_4]_2 was 90.3%.展开更多
Response surface methodology and central composite rotatable design (CCRD) for K = 3 were used to investigate the combined effect of blanching time (0-1 min), processing time (10-30 min) and sodium metabisulphi...Response surface methodology and central composite rotatable design (CCRD) for K = 3 were used to investigate the combined effect of blanching time (0-1 min), processing time (10-30 min) and sodium metabisulphite (Na2S205) salt concentration (0%-2%) on vitamin C content, hardness (texture), microbial count and color intensity of green pepper (Capsicum sinensis) during canning. Blanching, processing time and sodium metabisulphite (Na2S205) salt concentration all had variable effects on the vitamin C, microbial quality and sensory characteristics of the canned green peppers. Significant (P 〈 0.05) interactions were noted between all the factors with high regression coefficients (78.7%-97.0%). Increasing processing time caused significant decreases in vitamin C and microbial load of the product. However, salt concentration had only marginal and insignificant effect on the vitamin C content of the canned product. Sensory evaluation on the product showed that both the pre-processing conditions and of blanching and salt concentrations, and the processing time had varied effects on the color and hardness of the products. Hardness of the canned products generally decreased with increasing processing time and blanching time, while only minimal and insignificant effects were noted with blanching time. Increasing blanching time caused significant increasing retention of the dark green color of the peppers with only slight but insignificant increases noted with processing time, while increases in salt concentration consistently reduced the dark green color of the products. The optimum pre-processing and processing conditions that yielded products with high preference and consumer-acceptability were: blanching time of 0 min, processing time of 10 min and sodium metabisulphite concentration of 0.2%.展开更多
The start and the course of bio-corrosion are conditioned by many factors which include biological effects like the influence of vegetation and microorganisms causing the deterioration of materials. The influence of b...The start and the course of bio-corrosion are conditioned by many factors which include biological effects like the influence of vegetation and microorganisms causing the deterioration of materials. The influence of bacteria causing the deterioration of concrete has been linked to the generation of biogenic sulphuric and nitric acids which originate in corrosion process by dissolution of calcium containing minerals from the concrete matrices. This paper primarily focuses on the investigation of influence of sulphur-oxidising bacteria Acidithiobacillus thiooxidans and sulphate-reducing bacteria Desulfovibrio desulfuricans at the resistance degree of cement composites. Various concrete composites with 5% addition of black coal fly ash as cement replacement as well as the reference samples without coal fly ash addition were studied in the experiments environments of sewage system proceeded during 90 days. The The laboratory experiments as well as experiments in situ in real corrosion was manifested by surface changes and weight changes of cement composites samples as well as changes in pH values of leachates. Considerable surface changes were detected in all investigated samples by microscopic methods. Crystals precipitated on concrete samples surface were identified by EDX as mixture of gypsum and ettringite. The roughness increases of surface of cement microscopy. composites were determined by confocal laser scanning展开更多
The activity of melts and fluids may have played a key role in inducing the destruction of the eastern North China Craton in the early Cretaceous. Carbonate melts are important agents in mantle metasomatism and can si...The activity of melts and fluids may have played a key role in inducing the destruction of the eastern North China Craton in the early Cretaceous. Carbonate melts are important agents in mantle metasomatism and can significantly modify the physical and chemical properties of the subcontinental lithospheric mantle. Carbonate metasomatism can be identified by specific geochemical indices in clinopyroxene, such as high Ca/Al and low Ti/Eu ratios. This study presents the spatial and temporal variations of carbonate metasomatism in the lithospheric mantle beneath the eastern North China Craton. Three types of carbonate metasomatism are classified based on the geochemical compositions of clinopyroxene in mantle peridotites. Clinopyroxene formed by Type 1 carbonate metasomatism is characterized by very high Ca/Al ratios(15–70) and^(87)Sr/^(86)Sr ratios(0.706–0.713). Clinopyroxene derived from Type 2 carbonate metasomatism shows relatively high Ca/Al ratios(5–18) and^(87)Sr/^(86)Sr ratios(0.703–0.706). However, clinopyroxene resulting from Type 3 carbonate metasomatism has low Ca/Al ratios(5–9) and^(87)Sr/^(86)Sr ratios(0.702–0.704). Deep(garnet-bearing) and shallow(spinel-bearing) lithospheric mantle beneath the Sulu orogen and surrounding areas in the eastern North China Craton were affected by intense Type 1 carbonate metasomatism before the late Triassic. The deep subduction of the South China Block with its accompanying carbonate sediments was the trigger for Type 1 carbonate metasomatism, which reduced strength of the lithospheric mantle and provided a prerequisite for the destruction of the eastern North China Craton in the early Cretaceous. After the destruction of the eastern North China Craton, the ancient relict lithospheric mantle, represented by spinel harzburgite xenoliths hosted in the late Cretaceous to Cenozoic basalts,only recorded Type 2 carbonate metasomatism. This implies that the lithospheric mantle experienced the intense Type 1 carbonate metasomatism was completely destroyed and not preserved during decratonization. Spinel lherzolite xenoliths hosted in the late Cretaceous to Cenozoic basalts represent the young, fertile lithospheric mantle formed after the cratonic destruction and only a few samples record Type 2 and 3 carbonate metasomatisms. We suggest that carbonate melts derived from the subduction-modified asthenospheric mantle with variable proportions of recycled crustal material was responsible for the Type 2 and 3 carbonate metasomatisms. The carbonate metasomatism of the lithospheric mantle beneath the Jiaodong Peninsula and surrounding areas is very pervasive and is spatially consistent with the remarkable thinning of lithospheric mantle and giant gold deposits in this region. Therefore, we conclude that carbonate metasomatism in the lithospheric mantle played a crucial part in the modification, destruction and gold deposits in the eastern North China Craton.展开更多
文摘Dynamic effects of NO2--N accumulation were discussed owing to temperature.In different temperature,a series of vmax and Ks were found considering the relation between the temperature and rate of ammonia nitrogen transforming into NO2--N.The kinetics models,which reflected the conditions of ammonia nitrogen transforming into NO2--N in the treatment process of the coking wastewater,were built up.The characteristic coefficient temperature was determined according to Arrhenius.
文摘A series of highly cross-linked polymeric ionic liquids P[Ci(Vim)_2][Cl]_2(i = 2,3,4,5,6) were synthesized by quaternization reaction and polymerization,and used to remove nitrogen compounds from oils.The polymeric ionic liquids P[Ci(Vim)_2][H_2PO_4]_2(i = 2,3,4,5,6) were then obtained via ion exchange.The structures of P[C_4(Vim)_2][Cl]_2 and P[C_4(Vim)_2][H_2PO_4]_2 were characterized by Fourier transform infrared(FT-IR) spectroscopy,energy dispersive spectrometry(EDS),N2 adsorption-desorption isotherm measurements,scanning electron microscopy(SEM),thermogravimetric analysis and differential scanning calorimetry(TG/DSC).The removal of nitrogen compounds was characterized by pyridineFTIR spectrometry.The results indicated that P[C_4(Vim)_2][H_2PO_4]_2 with an average pore size of 19.23 nm and a specific surface area of 11.78 m^2/g was efficient for the removal of nitrogen compounds,and exhibited good thermal stability.The adsorption rate in the simulated oil reached 93.8% when using a polymeric ionic liquid P[C_4(Vim)_2][H_2PO_4]_2 to oil ratio of 0.04 and a temperature of 313 K.The nitrogen removal rate from the coal-tar diesel fraction achieved by P[C_4(Vim)_2][H_2PO_4]_2 was 90.3%.
文摘Response surface methodology and central composite rotatable design (CCRD) for K = 3 were used to investigate the combined effect of blanching time (0-1 min), processing time (10-30 min) and sodium metabisulphite (Na2S205) salt concentration (0%-2%) on vitamin C content, hardness (texture), microbial count and color intensity of green pepper (Capsicum sinensis) during canning. Blanching, processing time and sodium metabisulphite (Na2S205) salt concentration all had variable effects on the vitamin C, microbial quality and sensory characteristics of the canned green peppers. Significant (P 〈 0.05) interactions were noted between all the factors with high regression coefficients (78.7%-97.0%). Increasing processing time caused significant decreases in vitamin C and microbial load of the product. However, salt concentration had only marginal and insignificant effect on the vitamin C content of the canned product. Sensory evaluation on the product showed that both the pre-processing conditions and of blanching and salt concentrations, and the processing time had varied effects on the color and hardness of the products. Hardness of the canned products generally decreased with increasing processing time and blanching time, while only minimal and insignificant effects were noted with blanching time. Increasing blanching time caused significant increasing retention of the dark green color of the peppers with only slight but insignificant increases noted with processing time, while increases in salt concentration consistently reduced the dark green color of the products. The optimum pre-processing and processing conditions that yielded products with high preference and consumer-acceptability were: blanching time of 0 min, processing time of 10 min and sodium metabisulphite concentration of 0.2%.
文摘The start and the course of bio-corrosion are conditioned by many factors which include biological effects like the influence of vegetation and microorganisms causing the deterioration of materials. The influence of bacteria causing the deterioration of concrete has been linked to the generation of biogenic sulphuric and nitric acids which originate in corrosion process by dissolution of calcium containing minerals from the concrete matrices. This paper primarily focuses on the investigation of influence of sulphur-oxidising bacteria Acidithiobacillus thiooxidans and sulphate-reducing bacteria Desulfovibrio desulfuricans at the resistance degree of cement composites. Various concrete composites with 5% addition of black coal fly ash as cement replacement as well as the reference samples without coal fly ash addition were studied in the experiments environments of sewage system proceeded during 90 days. The The laboratory experiments as well as experiments in situ in real corrosion was manifested by surface changes and weight changes of cement composites samples as well as changes in pH values of leachates. Considerable surface changes were detected in all investigated samples by microscopic methods. Crystals precipitated on concrete samples surface were identified by EDX as mixture of gypsum and ettringite. The roughness increases of surface of cement microscopy. composites were determined by confocal laser scanning
基金co-supported by the National Key R&D Program of China(Grant No.2016YFC0600103)the National Natural Science Foundation of China(Grant Nos.41473031,41530211)+1 种基金the National Program on Key Basic Research Project(Grant No.2015CB856101)the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences(Grant No.MSFGPMR01)
文摘The activity of melts and fluids may have played a key role in inducing the destruction of the eastern North China Craton in the early Cretaceous. Carbonate melts are important agents in mantle metasomatism and can significantly modify the physical and chemical properties of the subcontinental lithospheric mantle. Carbonate metasomatism can be identified by specific geochemical indices in clinopyroxene, such as high Ca/Al and low Ti/Eu ratios. This study presents the spatial and temporal variations of carbonate metasomatism in the lithospheric mantle beneath the eastern North China Craton. Three types of carbonate metasomatism are classified based on the geochemical compositions of clinopyroxene in mantle peridotites. Clinopyroxene formed by Type 1 carbonate metasomatism is characterized by very high Ca/Al ratios(15–70) and^(87)Sr/^(86)Sr ratios(0.706–0.713). Clinopyroxene derived from Type 2 carbonate metasomatism shows relatively high Ca/Al ratios(5–18) and^(87)Sr/^(86)Sr ratios(0.703–0.706). However, clinopyroxene resulting from Type 3 carbonate metasomatism has low Ca/Al ratios(5–9) and^(87)Sr/^(86)Sr ratios(0.702–0.704). Deep(garnet-bearing) and shallow(spinel-bearing) lithospheric mantle beneath the Sulu orogen and surrounding areas in the eastern North China Craton were affected by intense Type 1 carbonate metasomatism before the late Triassic. The deep subduction of the South China Block with its accompanying carbonate sediments was the trigger for Type 1 carbonate metasomatism, which reduced strength of the lithospheric mantle and provided a prerequisite for the destruction of the eastern North China Craton in the early Cretaceous. After the destruction of the eastern North China Craton, the ancient relict lithospheric mantle, represented by spinel harzburgite xenoliths hosted in the late Cretaceous to Cenozoic basalts,only recorded Type 2 carbonate metasomatism. This implies that the lithospheric mantle experienced the intense Type 1 carbonate metasomatism was completely destroyed and not preserved during decratonization. Spinel lherzolite xenoliths hosted in the late Cretaceous to Cenozoic basalts represent the young, fertile lithospheric mantle formed after the cratonic destruction and only a few samples record Type 2 and 3 carbonate metasomatisms. We suggest that carbonate melts derived from the subduction-modified asthenospheric mantle with variable proportions of recycled crustal material was responsible for the Type 2 and 3 carbonate metasomatisms. The carbonate metasomatism of the lithospheric mantle beneath the Jiaodong Peninsula and surrounding areas is very pervasive and is spatially consistent with the remarkable thinning of lithospheric mantle and giant gold deposits in this region. Therefore, we conclude that carbonate metasomatism in the lithospheric mantle played a crucial part in the modification, destruction and gold deposits in the eastern North China Craton.