当气体在管道中流动时,遇到阀门、孔板等节流元件,由于压力显著降低形成节流现象,需要通过焦耳-汤姆逊系数预测温度的变化。对具有代表性的立方型状态方程,即Re dlich-Kw ong (RK)、 Soave-Re dlich-Kw ong (SRK)、 Pe ng-Robins on (PR...当气体在管道中流动时,遇到阀门、孔板等节流元件,由于压力显著降低形成节流现象,需要通过焦耳-汤姆逊系数预测温度的变化。对具有代表性的立方型状态方程,即Re dlich-Kw ong (RK)、 Soave-Re dlich-Kw ong (SRK)、 Pe ng-Robins on (PR)状态方程,以及多参数状态方程即Be ne dict-We bb-Rubin-Starling (BWRS)状态方程和对比态原理状态方程即Le e-Ke s le r-Plocke r (LKP)状态方程进行了焦耳-汤姆逊系数相关偏导数的推导,并给出了计算过程中涉及到的温度的一阶导数da/d T和Tda/d T公式及其单组分计算公式和多组分的混合规则。由具有代表性的状态方程推导出焦耳-汤姆逊系数公式,便于工程设计计算中使用。展开更多
通过实验的方法,分别对以空气、氮气、氩气和二氧化碳等气体为工质的涡流管的能量分离效应进行了研究,得出了涡流管的冷热效应、制冷量、单位制冷量和COP(性能系数,Coefficient of Performance)随冷流率变化的特性曲线.研究表明:涡流管...通过实验的方法,分别对以空气、氮气、氩气和二氧化碳等气体为工质的涡流管的能量分离效应进行了研究,得出了涡流管的冷热效应、制冷量、单位制冷量和COP(性能系数,Coefficient of Performance)随冷流率变化的特性曲线.研究表明:涡流管的冷热效应与工质的摩尔质量有着重要的关系,摩尔质量越大,其制冷和制热性能就越好;另外,在一定程度上还受气体本身的焦耳-汤姆逊系数的影响.对于制冷量和COP,除了跟工质的制冷效应和比热容有关外,跟摩尔质量也存在着相应的正比关系.展开更多
Based on the form of the n-dimensional generic power-law potential, the state equation and the heat capacity, the analytical expressions of the Joule-Thomson coefficient (3TC) for an ideal Bose gas are derived in n-...Based on the form of the n-dimensional generic power-law potential, the state equation and the heat capacity, the analytical expressions of the Joule-Thomson coefficient (3TC) for an ideal Bose gas are derived in n-dimensional potential. The effect of the spatial dimension and the external potential on the JTC are discussed, respectively. These results show that: (i) For the free ideal Bose gas, when n/s ≤ 2 (n is the spatial dimension, s is the momentum index in the relation between the energy and the momentum), and T → Tc (Tc is the critical temperature), the JTC can obviously improve by means of changing the throttle valve's shape and decreasing the spatial dimension of gases. (ii) For the inhomogeneous external potential, the discriminant △= [1 - y∏^ni=1(kT/εi)^1/tiГ(1/ti+1)] (k is the Boltzmann Constant, T is the thermodynamic temperature, ε is the external field's energy), is obtained. The potential makes the JTC increase when △ 〉 0, on the contrary, it makes the JTC decrease when A 〈△. (iii) In the homogenous strong external potential, the JTC gets the maximum on the condition of kTεi〈〈1.展开更多
文摘当气体在管道中流动时,遇到阀门、孔板等节流元件,由于压力显著降低形成节流现象,需要通过焦耳-汤姆逊系数预测温度的变化。对具有代表性的立方型状态方程,即Re dlich-Kw ong (RK)、 Soave-Re dlich-Kw ong (SRK)、 Pe ng-Robins on (PR)状态方程,以及多参数状态方程即Be ne dict-We bb-Rubin-Starling (BWRS)状态方程和对比态原理状态方程即Le e-Ke s le r-Plocke r (LKP)状态方程进行了焦耳-汤姆逊系数相关偏导数的推导,并给出了计算过程中涉及到的温度的一阶导数da/d T和Tda/d T公式及其单组分计算公式和多组分的混合规则。由具有代表性的状态方程推导出焦耳-汤姆逊系数公式,便于工程设计计算中使用。
文摘通过实验的方法,分别对以空气、氮气、氩气和二氧化碳等气体为工质的涡流管的能量分离效应进行了研究,得出了涡流管的冷热效应、制冷量、单位制冷量和COP(性能系数,Coefficient of Performance)随冷流率变化的特性曲线.研究表明:涡流管的冷热效应与工质的摩尔质量有着重要的关系,摩尔质量越大,其制冷和制热性能就越好;另外,在一定程度上还受气体本身的焦耳-汤姆逊系数的影响.对于制冷量和COP,除了跟工质的制冷效应和比热容有关外,跟摩尔质量也存在着相应的正比关系.
基金Supported by Natural Science Foundation of Shaanxi Province under Grant No. 2007A02the Science Foundation of Baoji University of Science and Arts of China under Grant No. ZK0914
文摘Based on the form of the n-dimensional generic power-law potential, the state equation and the heat capacity, the analytical expressions of the Joule-Thomson coefficient (3TC) for an ideal Bose gas are derived in n-dimensional potential. The effect of the spatial dimension and the external potential on the JTC are discussed, respectively. These results show that: (i) For the free ideal Bose gas, when n/s ≤ 2 (n is the spatial dimension, s is the momentum index in the relation between the energy and the momentum), and T → Tc (Tc is the critical temperature), the JTC can obviously improve by means of changing the throttle valve's shape and decreasing the spatial dimension of gases. (ii) For the inhomogeneous external potential, the discriminant △= [1 - y∏^ni=1(kT/εi)^1/tiГ(1/ti+1)] (k is the Boltzmann Constant, T is the thermodynamic temperature, ε is the external field's energy), is obtained. The potential makes the JTC increase when △ 〉 0, on the contrary, it makes the JTC decrease when A 〈△. (iii) In the homogenous strong external potential, the JTC gets the maximum on the condition of kTεi〈〈1.