期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于LVQ与SVM算法的近红外光谱煤产地鉴别 被引量:8
1
作者 李明 陈凡 +1 位作者 雷萌 李翠 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2016年第9期2793-2797,共5页
传统煤产地鉴别方法一般以发热量、挥发分、粘结指数、哈氏可磨指数和坩埚膨胀序数作为分类指标,过程复杂耗时较多、耗费巨大的人力、物力并且无法直接快速的得到煤样产地等问题,借助近红外光谱技术快速无损检测的优势,利用基于SVM的留... 传统煤产地鉴别方法一般以发热量、挥发分、粘结指数、哈氏可磨指数和坩埚膨胀序数作为分类指标,过程复杂耗时较多、耗费巨大的人力、物力并且无法直接快速的得到煤样产地等问题,借助近红外光谱技术快速无损检测的优势,利用基于SVM的留一算法对光谱数据集进行异常样本剔除,得到包含正确光谱信息的煤样光谱数据集,构造基于SVM算法与LVQ算法的定性分析模型,完成基于近红外光谱分析技术的煤产地的快速鉴别,无需对煤样的各种指标进行汇总并且人为预测。针对SVM分析模型中存在随机参数优化问题,引入PSO算法对SVM模型中的损失参数C和核函数半径g进行改进,得到最优参数,最后引入计算准确率的方法对比以上模型并进行评价分析。实验一共收集了加拿大、俄罗斯、澳大利亚、印度尼西亚、中国内蒙等5个地区的煤样光谱数据集,数据集共计305组煤样样本,其中异常样本共计10组,分别选择各国煤炭光谱的前31组作为训练样本,后6组数据作为测试样本,结果表明各分类模型的分类准确率均能达到75%以上,其中基于PSO算法改进的SVM分析模型的准确率可达到96.67%,仅一个样本出现问题,可快速高效地实现基于近红外光谱分析技术的煤产地的鉴别。 展开更多
关键词 煤产地鉴别 近红外光谱
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部