期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于LVQ与SVM算法的近红外光谱煤产地鉴别
被引量:
8
1
作者
李明
陈凡
+1 位作者
雷萌
李翠
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2016年第9期2793-2797,共5页
传统煤产地鉴别方法一般以发热量、挥发分、粘结指数、哈氏可磨指数和坩埚膨胀序数作为分类指标,过程复杂耗时较多、耗费巨大的人力、物力并且无法直接快速的得到煤样产地等问题,借助近红外光谱技术快速无损检测的优势,利用基于SVM的留...
传统煤产地鉴别方法一般以发热量、挥发分、粘结指数、哈氏可磨指数和坩埚膨胀序数作为分类指标,过程复杂耗时较多、耗费巨大的人力、物力并且无法直接快速的得到煤样产地等问题,借助近红外光谱技术快速无损检测的优势,利用基于SVM的留一算法对光谱数据集进行异常样本剔除,得到包含正确光谱信息的煤样光谱数据集,构造基于SVM算法与LVQ算法的定性分析模型,完成基于近红外光谱分析技术的煤产地的快速鉴别,无需对煤样的各种指标进行汇总并且人为预测。针对SVM分析模型中存在随机参数优化问题,引入PSO算法对SVM模型中的损失参数C和核函数半径g进行改进,得到最优参数,最后引入计算准确率的方法对比以上模型并进行评价分析。实验一共收集了加拿大、俄罗斯、澳大利亚、印度尼西亚、中国内蒙等5个地区的煤样光谱数据集,数据集共计305组煤样样本,其中异常样本共计10组,分别选择各国煤炭光谱的前31组作为训练样本,后6组数据作为测试样本,结果表明各分类模型的分类准确率均能达到75%以上,其中基于PSO算法改进的SVM分析模型的准确率可达到96.67%,仅一个样本出现问题,可快速高效地实现基于近红外光谱分析技术的煤产地的鉴别。
展开更多
关键词
煤产地鉴别
近红外光谱
下载PDF
职称材料
题名
基于LVQ与SVM算法的近红外光谱煤产地鉴别
被引量:
8
1
作者
李明
陈凡
雷萌
李翠
机构
中国矿业大学信息与电气工程学院
出处
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2016年第9期2793-2797,共5页
基金
国家自然科学基金项目(51304194)
江苏省自然科学基金项目(BK20140215)
中国博士后科学基金项目(2014M551695)资助
文摘
传统煤产地鉴别方法一般以发热量、挥发分、粘结指数、哈氏可磨指数和坩埚膨胀序数作为分类指标,过程复杂耗时较多、耗费巨大的人力、物力并且无法直接快速的得到煤样产地等问题,借助近红外光谱技术快速无损检测的优势,利用基于SVM的留一算法对光谱数据集进行异常样本剔除,得到包含正确光谱信息的煤样光谱数据集,构造基于SVM算法与LVQ算法的定性分析模型,完成基于近红外光谱分析技术的煤产地的快速鉴别,无需对煤样的各种指标进行汇总并且人为预测。针对SVM分析模型中存在随机参数优化问题,引入PSO算法对SVM模型中的损失参数C和核函数半径g进行改进,得到最优参数,最后引入计算准确率的方法对比以上模型并进行评价分析。实验一共收集了加拿大、俄罗斯、澳大利亚、印度尼西亚、中国内蒙等5个地区的煤样光谱数据集,数据集共计305组煤样样本,其中异常样本共计10组,分别选择各国煤炭光谱的前31组作为训练样本,后6组数据作为测试样本,结果表明各分类模型的分类准确率均能达到75%以上,其中基于PSO算法改进的SVM分析模型的准确率可达到96.67%,仅一个样本出现问题,可快速高效地实现基于近红外光谱分析技术的煤产地的鉴别。
关键词
煤产地鉴别
近红外光谱
Keywords
SVM
LVQ
PSO
Coal origin identification
Near-infrared spectrum
LVQ
SVM
PSO
分类号
TP18 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于LVQ与SVM算法的近红外光谱煤产地鉴别
李明
陈凡
雷萌
李翠
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2016
8
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部