A packing-flotation column was proposed to optimize the flotation environment A research system was es- tablished using a 100 mm diameter cyclonic micro-bubble flotation column to study fluid properties. Dry-plate and...A packing-flotation column was proposed to optimize the flotation environment A research system was es- tablished using a 100 mm diameter cyclonic micro-bubble flotation column to study fluid properties. Dry-plate and wet- plate pressure drops were studied and the corresponding pressure drop equations developed. The results show that the dry-plate pressure drop of the packing cyclonic micro-bubble flotation column is 10–15 times less than that of the chemical tower, which is principally shown in its relatively small resistance coefficient, ξ ≈0.0207. The wet-plate pressure drop is 2–3 times higher than that of the chemical tower, which is largely caused by the separation materials and characteristics of the equipment. With flotation, the greater the pressure drop, the better the flotation environment.展开更多
The influence of fly ash on the fresh properties, mechanical properties and carbonation properties were studied in this paper. The performance of a kind of curing agent which was applied to the hardened concrete surfa...The influence of fly ash on the fresh properties, mechanical properties and carbonation properties were studied in this paper. The performance of a kind of curing agent which was applied to the hardened concrete surface was evaluated. Incorporating large volume of fly ash will risk the concrete carbonation. The curing agent could prevent the concrete carbonation, and the mechanism was explained.展开更多
Orebody-rendering techniques are developed using the marching cubes (MC) algorithm. The shape of an orebody is viv- idly displayed in real time and can be used to guide mining design as well. The MC algorithm has been...Orebody-rendering techniques are developed using the marching cubes (MC) algorithm. The shape of an orebody is viv- idly displayed in real time and can be used to guide mining design as well. The MC algorithm has been improved in two aspects. By analyzing the principles of the MC algorithm, as well as the features of the specific application, improvements were developed to: eliminate ambiguities by using a unified isosurface constructing method in the voxels, and improve the operating efficiency of the MC algorithm by incorporating an octree structure. The analytical results of the examples demonstrate the effectiveness of our proposal.展开更多
In order to quantify the effect of matrix shrinkage on reservoir permeability during coalbed methane production, coal samples from Huozhou, Changzhi and Jincheng areas in Shanxi province (classified as high-volatile ...In order to quantify the effect of matrix shrinkage on reservoir permeability during coalbed methane production, coal samples from Huozhou, Changzhi and Jincheng areas in Shanxi province (classified as high-volatile bituminous coal, low-volatile bituminous coal and anthracite, respectively) were collected, and adsorption-induced coal swelling in methane were determined by an optical method at 40 ℃ and pressure up to 12 MPa. All three coals showed similar behavior-that swelling increased as a function of pressure up to about 10 MPa but thereafter no further increase in swelling was observed. Swelling in the direction perpendicular to the bedding plane is greater than that parallel to the bedding plane, and the differences are about 7.77-8.33%. The maximum volumetric swelling ranges from 2.73% to 3.21 %-increasing with increasing coal rank. The swelling data can be described by a modified DR model. In addition, swelling increases with the amount of adsorption. However, the increase shows a relatively slower stage followed by a relatively faster stage instead of a linear increase. Based on the assumption that sorption-induced swelling/shrinkage of coal in methane is reversible, the permeability increases induced by coal shrinkage during methane desorption was analyzed, and the results indicate that the permeability change is larger for higher rank coal in the same unit of pressure depletion.展开更多
Laser-induced incandescence (LII) has received increasing attention as a potentially powerful technique for in-situ measuring of the volume fraction and primary size of soot particles in combustion systems. In this st...Laser-induced incandescence (LII) has received increasing attention as a potentially powerful technique for in-situ measuring of the volume fraction and primary size of soot particles in combustion systems. In this study, a 3D Monte Carlo simulation combined with a Mie equation was developed to analyze the influence of spectral absorption and scattering on the measured LII flux emitted by soot particles. This paper represents a first attempt to analyze soot measurement using the LII technique in coal combustion products. The combustion products of gases (CO2, N2), soot, and fly-ash particles, present between the location of laser-excited soot and the LII flux receiver. The simulation results indicated that an almost Beer-Lambert exponential decrease in LII flux occurred with an increase in the volume fraction of soot particles, while a nearly linear decrease occurred with an increase in the volume fraction of fly-ash particles. The results also showed that scattering effects of both soot and fly-ash particles on the LII flux could be neglected. Compared with the absorption of gases, a decrease of 20% of LII flux was observed with soot particles, and a decrease of 10% with fly-ash particles.展开更多
基金Project 50425414 supported by the National Outstanding Youth Science Foundation of China
文摘A packing-flotation column was proposed to optimize the flotation environment A research system was es- tablished using a 100 mm diameter cyclonic micro-bubble flotation column to study fluid properties. Dry-plate and wet- plate pressure drops were studied and the corresponding pressure drop equations developed. The results show that the dry-plate pressure drop of the packing cyclonic micro-bubble flotation column is 10–15 times less than that of the chemical tower, which is principally shown in its relatively small resistance coefficient, ξ ≈0.0207. The wet-plate pressure drop is 2–3 times higher than that of the chemical tower, which is largely caused by the separation materials and characteristics of the equipment. With flotation, the greater the pressure drop, the better the flotation environment.
基金Key Prograns for Science and Technology Development of Chinese Transportation Industry( No. 2008-353-332-140)
文摘The influence of fly ash on the fresh properties, mechanical properties and carbonation properties were studied in this paper. The performance of a kind of curing agent which was applied to the hardened concrete surface was evaluated. Incorporating large volume of fly ash will risk the concrete carbonation. The curing agent could prevent the concrete carbonation, and the mechanism was explained.
基金Projects 20020008006 supported by the Exclusive Research Foundation for Doctoral Programs by Ministry of Education of China2006BAK04B04 by the National Key Project of Scientific and Technical Supporting Programs Funded by Ministry of Science & Technology of China
文摘Orebody-rendering techniques are developed using the marching cubes (MC) algorithm. The shape of an orebody is viv- idly displayed in real time and can be used to guide mining design as well. The MC algorithm has been improved in two aspects. By analyzing the principles of the MC algorithm, as well as the features of the specific application, improvements were developed to: eliminate ambiguities by using a unified isosurface constructing method in the voxels, and improve the operating efficiency of the MC algorithm by incorporating an octree structure. The analytical results of the examples demonstrate the effectiveness of our proposal.
基金funded by the National Key Technology Support Program of China (No. 2014BAC18B02)the National Natural Science Foundation of China (Nos. 41272176 and 41202116)
文摘In order to quantify the effect of matrix shrinkage on reservoir permeability during coalbed methane production, coal samples from Huozhou, Changzhi and Jincheng areas in Shanxi province (classified as high-volatile bituminous coal, low-volatile bituminous coal and anthracite, respectively) were collected, and adsorption-induced coal swelling in methane were determined by an optical method at 40 ℃ and pressure up to 12 MPa. All three coals showed similar behavior-that swelling increased as a function of pressure up to about 10 MPa but thereafter no further increase in swelling was observed. Swelling in the direction perpendicular to the bedding plane is greater than that parallel to the bedding plane, and the differences are about 7.77-8.33%. The maximum volumetric swelling ranges from 2.73% to 3.21 %-increasing with increasing coal rank. The swelling data can be described by a modified DR model. In addition, swelling increases with the amount of adsorption. However, the increase shows a relatively slower stage followed by a relatively faster stage instead of a linear increase. Based on the assumption that sorption-induced swelling/shrinkage of coal in methane is reversible, the permeability increases induced by coal shrinkage during methane desorption was analyzed, and the results indicate that the permeability change is larger for higher rank coal in the same unit of pressure depletion.
基金Project supported by the National Natural Science Foundation of China (No. 60534030)the National Hi-Tech Research and Development Program (973) (No. 2009CB219802)the Program of Introducing Talents of Discipline to University (No. B08026),China
文摘Laser-induced incandescence (LII) has received increasing attention as a potentially powerful technique for in-situ measuring of the volume fraction and primary size of soot particles in combustion systems. In this study, a 3D Monte Carlo simulation combined with a Mie equation was developed to analyze the influence of spectral absorption and scattering on the measured LII flux emitted by soot particles. This paper represents a first attempt to analyze soot measurement using the LII technique in coal combustion products. The combustion products of gases (CO2, N2), soot, and fly-ash particles, present between the location of laser-excited soot and the LII flux receiver. The simulation results indicated that an almost Beer-Lambert exponential decrease in LII flux occurred with an increase in the volume fraction of soot particles, while a nearly linear decrease occurred with an increase in the volume fraction of fly-ash particles. The results also showed that scattering effects of both soot and fly-ash particles on the LII flux could be neglected. Compared with the absorption of gases, a decrease of 20% of LII flux was observed with soot particles, and a decrease of 10% with fly-ash particles.