The advantages and disadvantages of organic antioxidant and inorganic salt on suppressing coal oxidation were analyzed on the basis of the theory that coal oxidation mechanisms can be attributed to the free radical ch...The advantages and disadvantages of organic antioxidant and inorganic salt on suppressing coal oxidation were analyzed on the basis of the theory that coal oxidation mechanisms can be attributed to the free radical chain-type reaction mechanism. The inhibition curves on suppressing coal oxidation of the different type and different concentration of organic antioxidant and inorganic salt were given through experimental study and data processing. Then some conclusions can be gained from the experimental study combining with theoretical analysis. First the inhibition mechanism of the organic antioxidant and inorganic salt is different. The former is that the chemical action is the dominant position. It can be called as the chain termination theory because the free radical is captured during coal oxidation. And the later is that the physical effect is the dominant position. It can be called as the decreasing-temperature theory because the liquid membrane which was formed by the inorganic salt can make coal body be the state of wetness and prevent oxygen from coal surface. Second the inhibition effect of the organic antioxidant is higher than the inorganic salt in the later period. But it is lower in the early period.展开更多
Gave a brief introduction to the origin,concepted and hierarchical structure of Digital Mine.As a huge complex system,Digital Mine took data base and model base to- gether as a mine data management system being its co...Gave a brief introduction to the origin,concepted and hierarchical structure of Digital Mine.As a huge complex system,Digital Mine took data base and model base to- gether as a mine data management system being its core,and Digital Mine was com- prised of five subsystems including data obtaining system,integral dispatching system, applied engineering system,data processing system,and data management system.Be- ing a digitally 3D visualized representation and a spatial information infrastructure of an actual mine,Digital Mine had three basic features such as data warehouse,information reference and digital platform.The present developments of Digital Mine in mining industry, research and education were also introduced.Examples were shown for present Digital Mine construction in China.The development trends,the key technologies and the recent construction procedures on Digital Mine were presented.展开更多
Concrete structures in main coal cleaning plants have been rebuilt and reinforced in the coal mines of the Shanghai Datun Energy Sources Co. Ltd., the first colliery of the Pingdingshan Coal Co. Ltd. and the Sanhejian...Concrete structures in main coal cleaning plants have been rebuilt and reinforced in the coal mines of the Shanghai Datun Energy Sources Co. Ltd., the first colliery of the Pingdingshan Coal Co. Ltd. and the Sanhejian mine of the Xuzhou Mining Group Co. Ltd. In these projects, the operating environment and reliability of concrete structures in the main plants of the three companies were investigated and the safety of the structures inspected. Qualitative and quantitative analyses were made on the special natural, technological and mechanical environments around the structures. On the basis of these analyses, we discuss the long-term, combined actions of the harsh natural (corrosive gases, liquids and solids) and mechanical environments on concrete structures and further investigated the damage and deteriorating mechanisms and curing techniques of concrete structures in the main coal cleaning plants. Our study can provide a theoretical basis for ensuring the reliability of concrete structures in main coal cleaning plants.展开更多
Reliability and wear resistance of cutting picks play a significant role in coal mine exploitation with coal shearers.Tool bit separation,blade breaking,severe erosion of the cutting body and fatigue fractures are the...Reliability and wear resistance of cutting picks play a significant role in coal mine exploitation with coal shearers.Tool bit separation,blade breaking,severe erosion of the cutting body and fatigue fractures are the main reasons for failure of cutting picks.We carried out carburization on a 30CrMnMo alloy to synthesize a new cutting pick material with improved mechanical properties and high wear resistance.The results indicated that carburization can effectively strengthen the surface of the 30CrMnMo alloy by forming a thick carburized layer and thus significantly improve the surface hardness and wear resistance.In addition,the excellent toughness of 30CrMnMo alloy as a substrate of cutting picks can prevent brittle ruptures and fatigue fractures under high impact stress conditions.The significant decrease in both frictional coefficient and rate of erosion of this carburized 30CrMnMo alloy suggests that this alloy is a potential material for cutting picks of coal shearers after rational carburization.展开更多
It was illustrated that the mining conditions inducing disasters changed with depth both in regularity of gradual and sudden change.The sudden change depth for different disaster conditions are different and controlle...It was illustrated that the mining conditions inducing disasters changed with depth both in regularity of gradual and sudden change.The sudden change depth for different disaster conditions are different and controlled by different factors.The high temperature and its change with depth are mainly controlled by strata structures and rock heat conductiv- ity property,the high rock stress and dynamical engineering disasters and their change with depth are mainly controlled by tectonic conditions,roof strata rock property and deep rock mechanical property,coal mine water disasters and their change with depth are mainly con- trolled by rock mechanical property of coal seam floor and regional groundwater circulation conditions,gas disaster conditions and their change with depth are mainly controlled by buried conditions of coal seam and opening conditions of geological structures.It is men- tioned that the key point for the control of deep coal mining disaster is to clearly understand the sudden change depth of different factors causing disasters.展开更多
Adopting oil-bath temperature programming experiment and gas chromatography, CO2's inhibitory performance on spontaneous combustion of Tingnan Coal Mine sample was analyzed. Through temperature rise rate test experim...Adopting oil-bath temperature programming experiment and gas chromatography, CO2's inhibitory performance on spontaneous combustion of Tingnan Coal Mine sample was analyzed. Through temperature rise rate test experiment, the accuracy, stability and reliability of the improved oil-bath temperature programming system applied in this experiment was proved to be superior to the traditional system. Spontaneous combustion characters parameters test of coal sample in pure air was carried out with this system and offered comparison standard for research in next stage. Temperature programming to coal sample was further conducted in oil-bath with different concentration of CO2. Testing results are compared with parameters of concentration of CO, O2, temperature, CO generation rate and O2 consumption rate tested and calculated in previous experiment in pure air. Methods of proportioning between concentration of CO and O2, CO concentration and temperature, CO generation rate and O2 consumption rate were applied to eliminate obstructions from certain external factors such as inlet of CO2; meanwhile influences of CO2 of different concentrations to coal oxidation and spontaneous combustion were investigated. Also CO2 inhibition technique was used in spontaneous combustion prevention in workface No. 106 of Tingnan Coal Mine, data collected from which indicate that CO2 performs well in inhibiting coal oxidation and spontaneous combustion.展开更多
The role of Nil(NO3)2 in the preparation of a magnetic activated carbon is reported in this paper. Magnetic coal-based activated carbons (MCAC) were prepared from Taixi anthracite with low ash content in the prese...The role of Nil(NO3)2 in the preparation of a magnetic activated carbon is reported in this paper. Magnetic coal-based activated carbons (MCAC) were prepared from Taixi anthracite with low ash content in the presence of Ni(NO3)2. The MCAC materials were characterized by a vibrating sample magnetometer (VSM), X-ray diffraction (XRD), a scanning electric microscope (SEM), and by N2 adsorption. The cylindri- cal precursors and derived char were also subjected to thermogravimetric analysis to compare their behavior of weight losses during carbonization. The results show that MCAC has a larger surface area (1074 m21g) and a higher pore volume (0.5792 cm3/g) with enhanced mesopore ratio (by about 10~). It also has a high saturation magnetization (1.6749 emu/g) and low coercivity (43.26 Oe), which allows the material to be magnetically separated. The MCAC is easily magnetized because the nickel salt is con- vetted into Ni during carbonization and activation. Metallic Ni has a strong magnetism on account of electrostatic interaction. Added Ni(NO3)2 catalyzes the carbonization and activation process by accelerat- ing burn off of the carbon, which contributes to the development of mesopores and macropores in the activated carbon.展开更多
Coal preparation is an integral part of the coal commodity supply chain. This stage of post-mining, pre-utilization beneficiation uses low-cost separation technologies to remove unwanted mineral matter and moisture wh...Coal preparation is an integral part of the coal commodity supply chain. This stage of post-mining, pre-utilization beneficiation uses low-cost separation technologies to remove unwanted mineral matter and moisture which hinder the value of the coal product. Coal preparation plants typically employ several parallel circuits of cleaning and dewatering operations, with each circuit designed to optimally treat a specific size range of coal. Recent innovations in coal preparation have increased the efficiency and capac- ity of individual unit operations while reinforcing the standard parallel cleaning approach. This article, which describes the historical influences and state-of-the-art design for the various coal preparation unit operations, is organized to distinguish between coarse/intermediate coal cleaning and fine/ultrafine coal cleaning. Size reduction, screening, classification, cleaning, dewatering, waste disposal unit operations are particularly highlighted, with a special focus on the LI.S. design philosophy. Notable differences between the U.S. and international operations are described as appropriate.展开更多
This paper points out that the mineral rights should be transferred at the mineral resource’s own value after the analysis that the resource owner can not recover the resource’s value only by collecting the mineral ...This paper points out that the mineral rights should be transferred at the mineral resource’s own value after the analysis that the resource owner can not recover the resource’s value only by collecting the mineral resource tax and the mineral resource compensating fee.Then the paper expounds the theory on mineral resource evaluation and gives out tbe income evaluating model. The paper finally concludes that the mineral rights should be transferred by the manner of auction after the analysis on the requirements asked by the economics on the mineral rights-transferring.展开更多
Coal burst represented a major hazard for some U.S. mining operations. This paper provides an historical review of the coal burst hazards,identifies the fundamental geological factors associated with these events,and ...Coal burst represented a major hazard for some U.S. mining operations. This paper provides an historical review of the coal burst hazards,identifies the fundamental geological factors associated with these events,and discusses mechanisms that can be used to avoid their occurrences. Coal burst are not common in most underground mines. Their occurrence almost always has such dramatic consequences to a mining operation that changes in practice are required. Fundamental factors influencing coal burst events include strong strata,abnormal strata caving,elevated stresses,critical size pillars and the lack of sufficiently sized barrier pillars during extraction. These factors interact to produce excessive stress,seismic shock and loss of confinement mechanisms. Over the 90 years of dealing with these hazards,many novel prevention controls have been developed including novel mine designs and extraction sequences,most of which are site specific in their application. Without an accurate assessment of the fundamental factors that influence coal burst and knowledge of their mechanisms of occurrence,control techniques may be misapplied and risk inadequately mitigated.展开更多
In this study, we provided more theoretical method for estimation of dissolution amount and applied this method to enhanced coalbed methane recovery (ECBMR) simulator. Dissolution amount was measured by method of di...In this study, we provided more theoretical method for estimation of dissolution amount and applied this method to enhanced coalbed methane recovery (ECBMR) simulator. Dissolution amount was measured by method of differential heat of adsorption. Akabira coal, a Japanese bituminous coal, was used for the experiment. The results showed that CO2 was stored in coal by both adsorption and dissolution. Using this result the methane production was calculated by ECBMR-simulator, enhanced coalbed methane recovery simulator, the University of Tokyo (ECOMERS-UT). Total stored CO2 was separated into adsorption component and dissolution component. Only the former component contributes to the competitive adsorption. Coalbed methane (CBM) production simulation considering the dissolution showed later and smaller peak production and prolonged methane production before the breakthrough than the conventional competitive adsorption.展开更多
Coal burst is a dynamic release of energy within the rock (or coal) mass leading to high velocity expulsion of the broken/failed material into mine openings. This phenomenon has been recognised as one of the most ca...Coal burst is a dynamic release of energy within the rock (or coal) mass leading to high velocity expulsion of the broken/failed material into mine openings. This phenomenon has been recognised as one of the most catastrophic failures associated with the coal mining industry, which can often lead to injuries and fatalities of miners as well as significant production losses. This paper aims to examine the mecha- nisms contributing to coal burst occurrence, with an emphasis on the energy release concept. In this study, a numerical modelling study has been conducted to evaluate the roles and contributions of differ- ence energy components. The energy analysis presented in this paper can help to improve the under- standing of energy release mechanisms esoeciallv under Australian conditions.展开更多
In recent years, there have been considerable developments in energy provision with the growing improvements in energy supply security and support systems in China. However, China's energy system continues to reta...In recent years, there have been considerable developments in energy provision with the growing improvements in energy supply security and support systems in China. However, China's energy system continues to retain a high-carbon feature where coal dominates energy production and consumption, which has led to the rapid growth of greenhouse gas emissions and associated serious environmental pollution. It has therefore become an important task for China to consider how to promote the low-carbon development of energy system. This paper summarized the basic trends and challenges for development of low-carbon energy system in China and studied the primary energy consumption and carbon emissions in different scenarios at 10-year intervals between 2010 and 2050. The analysis showed that controlling coal consumption will have an important influence on the control of total carbon emissions and of carbon emission peaking; promotion of non-fossil fuel energies will offer a growing contribution to a low-carbon transition in the medium and long term; the development of carbon capture, utilization, and storage will play a key role in realizing a deep decarbonization pathway, particularly after 2030; and the establishment of a low-carbon power system is crucial for the achievement of low-carbon energy transition. Finally, the strategic considerations and policy suggestions on the development of low-carbon energy systems in China are explored.展开更多
This study was to examine the influence of reactions of char–O2and char–steam on the char reactivity evolution.A newly-designed fixed-bed reactor was used to conduct gasification experiments using Victorian brown co...This study was to examine the influence of reactions of char–O2and char–steam on the char reactivity evolution.A newly-designed fixed-bed reactor was used to conduct gasification experiments using Victorian brown coal at800 °C. The chars prepared from the gasification experiments were then collected and subjected to reactivity characterisation(ex-situ reactivity) using TGA(thermogravimetric analyser) in air. The results indicate that the char reactivity from TGA was generally high when the char experienced intensive gasification reactions in 0.3%O2in the fixed-bed reactor. The addition of steam into the gasification not only enhanced the char conversion significantly but also reduced the char reactivity dramatically. The curve shapes of the char reactivity with involvement of steam were very different from that with O2 gasification, implying the importance of gasifying agents to char properties.展开更多
Based on element geochemical studies of the main Permian exploitable coal measure strata in Western Guizhou, the element geochemical distribution characteristics of the main exploitable coal measures were revealed in ...Based on element geochemical studies of the main Permian exploitable coal measure strata in Western Guizhou, the element geochemical distribution characteristics of the main exploitable coal measures were revealed in the regions of Dafang, Qianxi, Weining, Hezhang, Zhijin, etc., of Guizhou Province, and the results show that their element contents are mainly affected by terrestrial material supply. Coal measures formed in the delta plain environment where sufficient terrestrial materials are supplied contain relatively abundant trace elements and rare-earth elements, whereas those formed in the tidal-fiat environment influenced greatly by seawater have relatively low contents of trace elements and rare-earth elements, mainly con- trolled by the geological fact that basalts the parent rocks from source regions contain high trace elements and rare-earth elements. In addition, coal measures affected by later hydrothermal activities and fault tectonics contain a large amount of harmful elements. According to the rules of distribution of elements in coal measures, a new idea was put forward to classify coal-forming environments by using the geochemical composition characteristics, which is of great significance in dissolving the problem of whether coal measures were fbrmed either in delta environments or in tidal-flat environments in Western Gui- zhou. At the same time, the rules of distribution of elements in the main exploitable coal measures in Western Guizhou were fully understood, which is of direct significance in utilizing coal resources on the basis of classification of coals, as well as in developing the coal chemical industry.展开更多
This paper discusses the progress of computer integrated processing (CIPS) of coal-preparation and then preserits an intelligence controlled production-process, device-maintenance and production-management system of...This paper discusses the progress of computer integrated processing (CIPS) of coal-preparation and then preserits an intelligence controlled production-process, device-maintenance and production-management system of coal- preparation based on multi-agents (IICMMS-CP). The construction of the IICMMS-CP, the distributed network control system based on live intelligence control stations and the strategy of implementing distributed intelligence control system are studied in order to overcome the disadvantages brought about by the wide use of the PLC system by coaipreparation plants. The software frame, based on a Multi-Agent Intelligence Control and Maintenance Management integrated system, is studied and the implemention methods of IICMMS-CP are discussed. The characteristics of distributed architecture, cooperation and parallel computing meet the needs of integrated control of coal-preparation plants with large-scale spatial production distribution, densely-related processes and complex systems. Its application further improves the reliability and precision of process control, accuracy of fault identification and intelligence of production adjustment, establishes a technical basis for system integration and flexible production. The main function of the system has been tested in a coal-preparation plant to good effect in stabilizing product quality, improving efficiency and reducing consumption.展开更多
To achieve the goals of national sustainable development, the peaking control of CO2 emissions is pivotal, as well as other pollutants. In this paper, we build a Chinese inter-regional CGE model and simulate 13 polici...To achieve the goals of national sustainable development, the peaking control of CO2 emissions is pivotal, as well as other pollutants. In this paper, we build a Chinese inter-regional CGE model and simulate 13 policies and their combinations. By analyzing the energy consumptions, coal consumptions, relating emissions and their impacts on GDP, we found that with the structure adjustment policy, the proportion of coal in primary fossil fuels in 2030 will decrease from 53% to 48% and CO2 emissions will decrease by 11.3%-22.8% compared to the baseline scenario. With the energy intensity reduction policy, CO2 emissions will decrease by 33.3% in 2030 and 47.8% in 2050 than baseline scenario. Other pollutants will also be controlled as synergetic effects. In this study we also find that although the earlier the peaking time the better for emission amounts control, the economic costs can not be ignored. The GDP will decrease by 2.96%-8.23% under different scenarios. Therefore, integrated policy solutions are needed for realizing the peaks package and more targeted measures are required to achieve the peaks of other pollutants earlier.展开更多
文摘The advantages and disadvantages of organic antioxidant and inorganic salt on suppressing coal oxidation were analyzed on the basis of the theory that coal oxidation mechanisms can be attributed to the free radical chain-type reaction mechanism. The inhibition curves on suppressing coal oxidation of the different type and different concentration of organic antioxidant and inorganic salt were given through experimental study and data processing. Then some conclusions can be gained from the experimental study combining with theoretical analysis. First the inhibition mechanism of the organic antioxidant and inorganic salt is different. The former is that the chemical action is the dominant position. It can be called as the chain termination theory because the free radical is captured during coal oxidation. And the later is that the physical effect is the dominant position. It can be called as the decreasing-temperature theory because the liquid membrane which was formed by the inorganic salt can make coal body be the state of wetness and prevent oxygen from coal surface. Second the inhibition effect of the organic antioxidant is higher than the inorganic salt in the later period. But it is lower in the early period.
基金the National 863 High-Tech.Program of China(2006AA12Z2162007AA06Z108)the Natural Science Funds of China(50525414,40571137)
文摘Gave a brief introduction to the origin,concepted and hierarchical structure of Digital Mine.As a huge complex system,Digital Mine took data base and model base to- gether as a mine data management system being its core,and Digital Mine was com- prised of five subsystems including data obtaining system,integral dispatching system, applied engineering system,data processing system,and data management system.Be- ing a digitally 3D visualized representation and a spatial information infrastructure of an actual mine,Digital Mine had three basic features such as data warehouse,information reference and digital platform.The present developments of Digital Mine in mining industry, research and education were also introduced.Examples were shown for present Digital Mine construction in China.The development trends,the key technologies and the recent construction procedures on Digital Mine were presented.
基金Project BK2008128 supported by the Natural Science Foundation of Jiangsu Province
文摘Concrete structures in main coal cleaning plants have been rebuilt and reinforced in the coal mines of the Shanghai Datun Energy Sources Co. Ltd., the first colliery of the Pingdingshan Coal Co. Ltd. and the Sanhejian mine of the Xuzhou Mining Group Co. Ltd. In these projects, the operating environment and reliability of concrete structures in the main plants of the three companies were investigated and the safety of the structures inspected. Qualitative and quantitative analyses were made on the special natural, technological and mechanical environments around the structures. On the basis of these analyses, we discuss the long-term, combined actions of the harsh natural (corrosive gases, liquids and solids) and mechanical environments on concrete structures and further investigated the damage and deteriorating mechanisms and curing techniques of concrete structures in the main coal cleaning plants. Our study can provide a theoretical basis for ensuring the reliability of concrete structures in main coal cleaning plants.
基金the Youth Foundation of China University of Mining & Technology (No.2009A056)the Tribology Science Fund from State Key Laboratory of Tribology at Tsinghua University (No.SKLTKF08A01)+1 种基金the National Natural Science Foundation of China (Nos.50905180 and 51005234)the National Science and Technology Pillar Program in the Eleventh Five-Year Plan Period (No.2008BAB36B02)
文摘Reliability and wear resistance of cutting picks play a significant role in coal mine exploitation with coal shearers.Tool bit separation,blade breaking,severe erosion of the cutting body and fatigue fractures are the main reasons for failure of cutting picks.We carried out carburization on a 30CrMnMo alloy to synthesize a new cutting pick material with improved mechanical properties and high wear resistance.The results indicated that carburization can effectively strengthen the surface of the 30CrMnMo alloy by forming a thick carburized layer and thus significantly improve the surface hardness and wear resistance.In addition,the excellent toughness of 30CrMnMo alloy as a substrate of cutting picks can prevent brittle ruptures and fatigue fractures under high impact stress conditions.The significant decrease in both frictional coefficient and rate of erosion of this carburized 30CrMnMo alloy suggests that this alloy is a potential material for cutting picks of coal shearers after rational carburization.
文摘It was illustrated that the mining conditions inducing disasters changed with depth both in regularity of gradual and sudden change.The sudden change depth for different disaster conditions are different and controlled by different factors.The high temperature and its change with depth are mainly controlled by strata structures and rock heat conductiv- ity property,the high rock stress and dynamical engineering disasters and their change with depth are mainly controlled by tectonic conditions,roof strata rock property and deep rock mechanical property,coal mine water disasters and their change with depth are mainly con- trolled by rock mechanical property of coal seam floor and regional groundwater circulation conditions,gas disaster conditions and their change with depth are mainly controlled by buried conditions of coal seam and opening conditions of geological structures.It is men- tioned that the key point for the control of deep coal mining disaster is to clearly understand the sudden change depth of different factors causing disasters.
文摘Adopting oil-bath temperature programming experiment and gas chromatography, CO2's inhibitory performance on spontaneous combustion of Tingnan Coal Mine sample was analyzed. Through temperature rise rate test experiment, the accuracy, stability and reliability of the improved oil-bath temperature programming system applied in this experiment was proved to be superior to the traditional system. Spontaneous combustion characters parameters test of coal sample in pure air was carried out with this system and offered comparison standard for research in next stage. Temperature programming to coal sample was further conducted in oil-bath with different concentration of CO2. Testing results are compared with parameters of concentration of CO, O2, temperature, CO generation rate and O2 consumption rate tested and calculated in previous experiment in pure air. Methods of proportioning between concentration of CO and O2, CO concentration and temperature, CO generation rate and O2 consumption rate were applied to eliminate obstructions from certain external factors such as inlet of CO2; meanwhile influences of CO2 of different concentrations to coal oxidation and spontaneous combustion were investigated. Also CO2 inhibition technique was used in spontaneous combustion prevention in workface No. 106 of Tingnan Coal Mine, data collected from which indicate that CO2 performs well in inhibiting coal oxidation and spontaneous combustion.
基金support by the National Natural Science Foundation of China (No. 20776150)the National Hi-Tech Research and Development Program of China(No. 2008AA05Z308)the Special Fund for Basic Scientific Research of Central Colleges (No. 2009QH15)
文摘The role of Nil(NO3)2 in the preparation of a magnetic activated carbon is reported in this paper. Magnetic coal-based activated carbons (MCAC) were prepared from Taixi anthracite with low ash content in the presence of Ni(NO3)2. The MCAC materials were characterized by a vibrating sample magnetometer (VSM), X-ray diffraction (XRD), a scanning electric microscope (SEM), and by N2 adsorption. The cylindri- cal precursors and derived char were also subjected to thermogravimetric analysis to compare their behavior of weight losses during carbonization. The results show that MCAC has a larger surface area (1074 m21g) and a higher pore volume (0.5792 cm3/g) with enhanced mesopore ratio (by about 10~). It also has a high saturation magnetization (1.6749 emu/g) and low coercivity (43.26 Oe), which allows the material to be magnetically separated. The MCAC is easily magnetized because the nickel salt is con- vetted into Ni during carbonization and activation. Metallic Ni has a strong magnetism on account of electrostatic interaction. Added Ni(NO3)2 catalyzes the carbonization and activation process by accelerat- ing burn off of the carbon, which contributes to the development of mesopores and macropores in the activated carbon.
文摘Coal preparation is an integral part of the coal commodity supply chain. This stage of post-mining, pre-utilization beneficiation uses low-cost separation technologies to remove unwanted mineral matter and moisture which hinder the value of the coal product. Coal preparation plants typically employ several parallel circuits of cleaning and dewatering operations, with each circuit designed to optimally treat a specific size range of coal. Recent innovations in coal preparation have increased the efficiency and capac- ity of individual unit operations while reinforcing the standard parallel cleaning approach. This article, which describes the historical influences and state-of-the-art design for the various coal preparation unit operations, is organized to distinguish between coarse/intermediate coal cleaning and fine/ultrafine coal cleaning. Size reduction, screening, classification, cleaning, dewatering, waste disposal unit operations are particularly highlighted, with a special focus on the LI.S. design philosophy. Notable differences between the U.S. and international operations are described as appropriate.
文摘This paper points out that the mineral rights should be transferred at the mineral resource’s own value after the analysis that the resource owner can not recover the resource’s value only by collecting the mineral resource tax and the mineral resource compensating fee.Then the paper expounds the theory on mineral resource evaluation and gives out tbe income evaluating model. The paper finally concludes that the mineral rights should be transferred by the manner of auction after the analysis on the requirements asked by the economics on the mineral rights-transferring.
文摘Coal burst represented a major hazard for some U.S. mining operations. This paper provides an historical review of the coal burst hazards,identifies the fundamental geological factors associated with these events,and discusses mechanisms that can be used to avoid their occurrences. Coal burst are not common in most underground mines. Their occurrence almost always has such dramatic consequences to a mining operation that changes in practice are required. Fundamental factors influencing coal burst events include strong strata,abnormal strata caving,elevated stresses,critical size pillars and the lack of sufficiently sized barrier pillars during extraction. These factors interact to produce excessive stress,seismic shock and loss of confinement mechanisms. Over the 90 years of dealing with these hazards,many novel prevention controls have been developed including novel mine designs and extraction sequences,most of which are site specific in their application. Without an accurate assessment of the fundamental factors that influence coal burst and knowledge of their mechanisms of occurrence,control techniques may be misapplied and risk inadequately mitigated.
文摘In this study, we provided more theoretical method for estimation of dissolution amount and applied this method to enhanced coalbed methane recovery (ECBMR) simulator. Dissolution amount was measured by method of differential heat of adsorption. Akabira coal, a Japanese bituminous coal, was used for the experiment. The results showed that CO2 was stored in coal by both adsorption and dissolution. Using this result the methane production was calculated by ECBMR-simulator, enhanced coalbed methane recovery simulator, the University of Tokyo (ECOMERS-UT). Total stored CO2 was separated into adsorption component and dissolution component. Only the former component contributes to the competitive adsorption. Coalbed methane (CBM) production simulation considering the dissolution showed later and smaller peak production and prolonged methane production before the breakthrough than the conventional competitive adsorption.
文摘Coal burst is a dynamic release of energy within the rock (or coal) mass leading to high velocity expulsion of the broken/failed material into mine openings. This phenomenon has been recognised as one of the most catastrophic failures associated with the coal mining industry, which can often lead to injuries and fatalities of miners as well as significant production losses. This paper aims to examine the mecha- nisms contributing to coal burst occurrence, with an emphasis on the energy release concept. In this study, a numerical modelling study has been conducted to evaluate the roles and contributions of differ- ence energy components. The energy analysis presented in this paper can help to improve the under- standing of energy release mechanisms esoeciallv under Australian conditions.
文摘In recent years, there have been considerable developments in energy provision with the growing improvements in energy supply security and support systems in China. However, China's energy system continues to retain a high-carbon feature where coal dominates energy production and consumption, which has led to the rapid growth of greenhouse gas emissions and associated serious environmental pollution. It has therefore become an important task for China to consider how to promote the low-carbon development of energy system. This paper summarized the basic trends and challenges for development of low-carbon energy system in China and studied the primary energy consumption and carbon emissions in different scenarios at 10-year intervals between 2010 and 2050. The analysis showed that controlling coal consumption will have an important influence on the control of total carbon emissions and of carbon emission peaking; promotion of non-fossil fuel energies will offer a growing contribution to a low-carbon transition in the medium and long term; the development of carbon capture, utilization, and storage will play a key role in realizing a deep decarbonization pathway, particularly after 2030; and the establishment of a low-carbon power system is crucial for the achievement of low-carbon energy transition. Finally, the strategic considerations and policy suggestions on the development of low-carbon energy systems in China are explored.
基金Support by the Victorian State Government under its Energy Technology Innovation Strategy programme and the 12th Five-Year Plan of National Science and Technology of China(2012BAA04B02)
文摘This study was to examine the influence of reactions of char–O2and char–steam on the char reactivity evolution.A newly-designed fixed-bed reactor was used to conduct gasification experiments using Victorian brown coal at800 °C. The chars prepared from the gasification experiments were then collected and subjected to reactivity characterisation(ex-situ reactivity) using TGA(thermogravimetric analyser) in air. The results indicate that the char reactivity from TGA was generally high when the char experienced intensive gasification reactions in 0.3%O2in the fixed-bed reactor. The addition of steam into the gasification not only enhanced the char conversion significantly but also reduced the char reactivity dramatically. The curve shapes of the char reactivity with involvement of steam were very different from that with O2 gasification, implying the importance of gasifying agents to char properties.
文摘Based on element geochemical studies of the main Permian exploitable coal measure strata in Western Guizhou, the element geochemical distribution characteristics of the main exploitable coal measures were revealed in the regions of Dafang, Qianxi, Weining, Hezhang, Zhijin, etc., of Guizhou Province, and the results show that their element contents are mainly affected by terrestrial material supply. Coal measures formed in the delta plain environment where sufficient terrestrial materials are supplied contain relatively abundant trace elements and rare-earth elements, whereas those formed in the tidal-fiat environment influenced greatly by seawater have relatively low contents of trace elements and rare-earth elements, mainly con- trolled by the geological fact that basalts the parent rocks from source regions contain high trace elements and rare-earth elements. In addition, coal measures affected by later hydrothermal activities and fault tectonics contain a large amount of harmful elements. According to the rules of distribution of elements in coal measures, a new idea was put forward to classify coal-forming environments by using the geochemical composition characteristics, which is of great significance in dissolving the problem of whether coal measures were fbrmed either in delta environments or in tidal-flat environments in Western Gui- zhou. At the same time, the rules of distribution of elements in the main exploitable coal measures in Western Guizhou were fully understood, which is of direct significance in utilizing coal resources on the basis of classification of coals, as well as in developing the coal chemical industry.
文摘This paper discusses the progress of computer integrated processing (CIPS) of coal-preparation and then preserits an intelligence controlled production-process, device-maintenance and production-management system of coal- preparation based on multi-agents (IICMMS-CP). The construction of the IICMMS-CP, the distributed network control system based on live intelligence control stations and the strategy of implementing distributed intelligence control system are studied in order to overcome the disadvantages brought about by the wide use of the PLC system by coaipreparation plants. The software frame, based on a Multi-Agent Intelligence Control and Maintenance Management integrated system, is studied and the implemention methods of IICMMS-CP are discussed. The characteristics of distributed architecture, cooperation and parallel computing meet the needs of integrated control of coal-preparation plants with large-scale spatial production distribution, densely-related processes and complex systems. Its application further improves the reliability and precision of process control, accuracy of fault identification and intelligence of production adjustment, establishes a technical basis for system integration and flexible production. The main function of the system has been tested in a coal-preparation plant to good effect in stabilizing product quality, improving efficiency and reducing consumption.
基金funded by the National Natural Fund of China(71173206)the Strategic Priority Research ProgramdClimate Change:Carbon Budget and Related Issues of the Chinese Academy of Sciences(XDA05150300)
文摘To achieve the goals of national sustainable development, the peaking control of CO2 emissions is pivotal, as well as other pollutants. In this paper, we build a Chinese inter-regional CGE model and simulate 13 policies and their combinations. By analyzing the energy consumptions, coal consumptions, relating emissions and their impacts on GDP, we found that with the structure adjustment policy, the proportion of coal in primary fossil fuels in 2030 will decrease from 53% to 48% and CO2 emissions will decrease by 11.3%-22.8% compared to the baseline scenario. With the energy intensity reduction policy, CO2 emissions will decrease by 33.3% in 2030 and 47.8% in 2050 than baseline scenario. Other pollutants will also be controlled as synergetic effects. In this study we also find that although the earlier the peaking time the better for emission amounts control, the economic costs can not be ignored. The GDP will decrease by 2.96%-8.23% under different scenarios. Therefore, integrated policy solutions are needed for realizing the peaks package and more targeted measures are required to achieve the peaks of other pollutants earlier.