In order to discuss the effect of tectonic stress on the structural evolution of coal, given the importance attached to High-resolution Transmission Electron Microscopy (HTEM), we investigated several aspects of mater...In order to discuss the effect of tectonic stress on the structural evolution of coal, given the importance attached to High-resolution Transmission Electron Microscopy (HTEM), we investigated several aspects of material structures of high-rank Carboniferous period coal, located in the northern foreland basin of the Dabie orogenic belt in eastern China. High powered crystal lattice images of Bright Fields (BF) and Selected Area Diffraction patterns (SAD) of different types of metamorphism in coal were obtained. The results show that the Basic Structural Units (BSU) become increasingly more compact as a function of rising tem-perature and pressure. Under pressure, the local orientation of molecules is strengthened, the arrangement of BSU speeds up and the degree of order is clearly enhanced.展开更多
基金support for this work, provided by the National Natural Science Foundation of China (No40872105)the Scientific Research Foundation of the North China Institute of Science Technology (NoA08002)
文摘In order to discuss the effect of tectonic stress on the structural evolution of coal, given the importance attached to High-resolution Transmission Electron Microscopy (HTEM), we investigated several aspects of material structures of high-rank Carboniferous period coal, located in the northern foreland basin of the Dabie orogenic belt in eastern China. High powered crystal lattice images of Bright Fields (BF) and Selected Area Diffraction patterns (SAD) of different types of metamorphism in coal were obtained. The results show that the Basic Structural Units (BSU) become increasingly more compact as a function of rising tem-perature and pressure. Under pressure, the local orientation of molecules is strengthened, the arrangement of BSU speeds up and the degree of order is clearly enhanced.