Gas migration in coal bed is a multiple-physical process, of which not only includes gas desorption/diffusion through coal matrix and gas Darcy flow through the cleat system, but also results in deformation of solid c...Gas migration in coal bed is a multiple-physical process, of which not only includes gas desorption/diffusion through coal matrix and gas Darcy flow through the cleat system, but also results in deformation of solid coal. Especially for enhanced coal bed methane(ECBM) and CO2 capture and sequestration(CCS), gas injection is mainly controlled by the gas diffusivity in the coal matrix and coal permeability.Although the relevant coal permeability models have been frequently developed, how the dual-porosity system of coal affects gas adsorption/diffusion is still poorly understood. In this paper, a series of experiments were carried out in order to investigate deformation evolution of intact coal subjected to hydrostatic pressure of different gases(including pure H2, N2 and CO2) under isotherm injection. In the testing process, the coal strain and injected gas pressure were measured simultaneously. The results show that the pressure of non-adsorptive helium remained unchanged throughout the isothermal injection process, in which the volumetric strain of the coal shrinked firstly and maintained unchanged at lower isobaric pressure. With the injected pressure increasing, the coal volume underwent a transition from shrinking to recovery(still less than initial volume of the coal). In contrast, N2 injection caused the coal to shrink firstly and then recover with decreasing gas pressure. The recovery volume was larger than the initial volume due to adsorption-induced swelling. For the case of CO2 injection, although the stronger adsorption effect could result in swelling of the solid coal, the presence of higher gas pressure appears to contribute the swelling coal to shrink. These results indicate that the evolution of coal deformation is time dependent throughout the migration of injected gas. From the mechanical characteristics of poroelastical materials, distribution of pore pressure within the coal is to vary with the gas injection,during which the pore pressure in the cleats will rapidly increase, in contrast, the pore pressure in the matrix will hysteretically elevate. Such a difference on changes of pore pressure between the cleats and the matrix will contribute to the shrinkage of the matrix as a result of initially greater effective stress.Besides, both gas-adsorption-induced swelling and decreasing effective stress also control the coal deformation transition. This work gives us an insight into investigation on influence of effective stress on coal-gas interaction.展开更多
It is fundamental that changes in coal reservoir permeability are researched, in particular, the accurate determination of variations in the coal matrix caused by CO2 replacing CH4 at different gas saturation conditio...It is fundamental that changes in coal reservoir permeability are researched, in particular, the accurate determination of variations in the coal matrix caused by CO2 replacing CH4 at different gas saturation conditions. Based on the surface free energy, the extended Langmuir isothermal adsorption model, combined with CO2 replacing CH4 in experimental trials, and calling on the more general principles and characteristics of the field, mathematical models describing the coal matrix as it undergoes different processes such as CO2 injection and desorption were established. Combined with laboratory data about CO2 replacement under different methane saturation conditions, a law governing the variations in coal matrix CO2 replacement under different methane gas saturation conditions was obtained. The results showed that: in the injection process, the coal matrix expansion rate caused by CO2 or CH4 was exponentially increased with the CO2 pressure increase, the expansion caused by CO2 was far greater than the expansion caused by CH4 in the desorption process, the coal matrix shrinkage caused by CO2 or CH4 was exponentially increased with the pressure decrease, the shrinkage caused by CO2 was larger than the shrinkage caused by CH4 under the same pressure and different gas saturation, the total shrinkage in the desorption process in the coal matrix was greater than the total expansion in the injection process. At higher gas saturations, the total coal matrix shrinkage volume exceeded the total expansion corresponding to pressure points higher in the desorption process.展开更多
基金founded by the National Natural Science Foundation of China(Nos.41202194,41172116,and2013M542097)the Natural Science Foundation of Shandong Province,China(No.ZR2012EEQ021)+1 种基金‘‘Leading Talent Plan’’ of Shandong University of Science and Technology,Chinaresearch groups for ‘‘Taishan Scholar’’ and ‘‘Controlon Instability of Deep Surrounding Rocks’’ of SDUST
文摘Gas migration in coal bed is a multiple-physical process, of which not only includes gas desorption/diffusion through coal matrix and gas Darcy flow through the cleat system, but also results in deformation of solid coal. Especially for enhanced coal bed methane(ECBM) and CO2 capture and sequestration(CCS), gas injection is mainly controlled by the gas diffusivity in the coal matrix and coal permeability.Although the relevant coal permeability models have been frequently developed, how the dual-porosity system of coal affects gas adsorption/diffusion is still poorly understood. In this paper, a series of experiments were carried out in order to investigate deformation evolution of intact coal subjected to hydrostatic pressure of different gases(including pure H2, N2 and CO2) under isotherm injection. In the testing process, the coal strain and injected gas pressure were measured simultaneously. The results show that the pressure of non-adsorptive helium remained unchanged throughout the isothermal injection process, in which the volumetric strain of the coal shrinked firstly and maintained unchanged at lower isobaric pressure. With the injected pressure increasing, the coal volume underwent a transition from shrinking to recovery(still less than initial volume of the coal). In contrast, N2 injection caused the coal to shrink firstly and then recover with decreasing gas pressure. The recovery volume was larger than the initial volume due to adsorption-induced swelling. For the case of CO2 injection, although the stronger adsorption effect could result in swelling of the solid coal, the presence of higher gas pressure appears to contribute the swelling coal to shrink. These results indicate that the evolution of coal deformation is time dependent throughout the migration of injected gas. From the mechanical characteristics of poroelastical materials, distribution of pore pressure within the coal is to vary with the gas injection,during which the pore pressure in the cleats will rapidly increase, in contrast, the pore pressure in the matrix will hysteretically elevate. Such a difference on changes of pore pressure between the cleats and the matrix will contribute to the shrinkage of the matrix as a result of initially greater effective stress.Besides, both gas-adsorption-induced swelling and decreasing effective stress also control the coal deformation transition. This work gives us an insight into investigation on influence of effective stress on coal-gas interaction.
文摘It is fundamental that changes in coal reservoir permeability are researched, in particular, the accurate determination of variations in the coal matrix caused by CO2 replacing CH4 at different gas saturation conditions. Based on the surface free energy, the extended Langmuir isothermal adsorption model, combined with CO2 replacing CH4 in experimental trials, and calling on the more general principles and characteristics of the field, mathematical models describing the coal matrix as it undergoes different processes such as CO2 injection and desorption were established. Combined with laboratory data about CO2 replacement under different methane saturation conditions, a law governing the variations in coal matrix CO2 replacement under different methane gas saturation conditions was obtained. The results showed that: in the injection process, the coal matrix expansion rate caused by CO2 or CH4 was exponentially increased with the CO2 pressure increase, the expansion caused by CO2 was far greater than the expansion caused by CH4 in the desorption process, the coal matrix shrinkage caused by CO2 or CH4 was exponentially increased with the pressure decrease, the shrinkage caused by CO2 was larger than the shrinkage caused by CH4 under the same pressure and different gas saturation, the total shrinkage in the desorption process in the coal matrix was greater than the total expansion in the injection process. At higher gas saturations, the total coal matrix shrinkage volume exceeded the total expansion corresponding to pressure points higher in the desorption process.