In order to enter effective parameters of rock mass in a numerical model,the relationships between mechanical parameters of rock and rock mass were obtained by an inversion method and an orthogonal test,given our meas...In order to enter effective parameters of rock mass in a numerical model,the relationships between mechanical parameters of rock and rock mass were obtained by an inversion method and an orthogonal test,given our measurements of the maximum heights of two failure zones in the Longdong coal mine. Using the maximum heights of the caving zone and the water-conducting fractured zone as test indices the modulus of elasticity,the Poisson ratio,cohesion and tension strength as test factors and different values of reduction enhancement factors as test levels,an orthogonal test was designed to obtain an optimum simulation scheme.From the analysis of different values of reduction enhancement factors which affect the test indices,an optimum factor combination for modification of parameters could be inferred.By using modified parameters in our numerical simulation,the maximum heights of the caving zone and the water-conducting fractured zone in the extensive Xiyi area were determined as 15.06 m and 36.92 m.These values were almost the same as those obtained by similar material simulation(8.5 m and 37.0 m)and empirical prediction(8.4 m and 34.4 m).These results indicate that the modification of parameters is a rational method.展开更多
Based on the occurrence features of Group B coal-seams at a coal mine in the Huainan coal mining area, the elasto-plastic mechanical damage constitutive functions and numerical model for the protective layer excavatio...Based on the occurrence features of Group B coal-seams at a coal mine in the Huainan coal mining area, the elasto-plastic mechanical damage constitutive functions and numerical model for the protective layer excavation were established. With the UDEC2D computer program, after the upper protective layer was mined, the stress field change trends, crack development, and expansion deformation trends of underlying coal rock seams in the floor of the working face were simulated and analyzed. The simulation results show the stress changes in coal rock seams, the evolution process of pre-cracks during the process of upper protective layer mining, the caved zone and fractured zone of the underlying coal rock seams. At the same time, the results from the actual investigation and analysis of protected layer deformation match the simulation values, which verifies the validity and accuracy of numerical simulation results. The study results have an important guiding significance for gas management in low permeability and high gas coal seams with similar mining conditions.展开更多
By analyzing the characteristics and the production mechanism of rock burstthat goes with abnormal gas emission in deep coal seams,the essential method of eliminatingabnormal gas emission by eliminating the occurrence...By analyzing the characteristics and the production mechanism of rock burstthat goes with abnormal gas emission in deep coal seams,the essential method of eliminatingabnormal gas emission by eliminating the occurrence of rock burst or depressingthe magnitude of rock burst was considered.The No.237 working face was selected asthe typical working face contacting gas in deep mining;aimed at this working face,a systemof rock burst prediction and control for coal seam contacting gas in deep mining wasestablished.This system includes three parts:① regional prediction of rock burst hazardbefore mining,② local prediction of rock burst hazard during mining,and ③ rock burstcontrol.展开更多
文摘In order to enter effective parameters of rock mass in a numerical model,the relationships between mechanical parameters of rock and rock mass were obtained by an inversion method and an orthogonal test,given our measurements of the maximum heights of two failure zones in the Longdong coal mine. Using the maximum heights of the caving zone and the water-conducting fractured zone as test indices the modulus of elasticity,the Poisson ratio,cohesion and tension strength as test factors and different values of reduction enhancement factors as test levels,an orthogonal test was designed to obtain an optimum simulation scheme.From the analysis of different values of reduction enhancement factors which affect the test indices,an optimum factor combination for modification of parameters could be inferred.By using modified parameters in our numerical simulation,the maximum heights of the caving zone and the water-conducting fractured zone in the extensive Xiyi area were determined as 15.06 m and 36.92 m.These values were almost the same as those obtained by similar material simulation(8.5 m and 37.0 m)and empirical prediction(8.4 m and 34.4 m).These results indicate that the modification of parameters is a rational method.
基金Supported by the National Natural Science Foundation of China (51004003) the Natural Science Foundation of Ministry of Education of Anhui Province (K J2010A091 )
文摘Based on the occurrence features of Group B coal-seams at a coal mine in the Huainan coal mining area, the elasto-plastic mechanical damage constitutive functions and numerical model for the protective layer excavation were established. With the UDEC2D computer program, after the upper protective layer was mined, the stress field change trends, crack development, and expansion deformation trends of underlying coal rock seams in the floor of the working face were simulated and analyzed. The simulation results show the stress changes in coal rock seams, the evolution process of pre-cracks during the process of upper protective layer mining, the caved zone and fractured zone of the underlying coal rock seams. At the same time, the results from the actual investigation and analysis of protected layer deformation match the simulation values, which verifies the validity and accuracy of numerical simulation results. The study results have an important guiding significance for gas management in low permeability and high gas coal seams with similar mining conditions.
基金Supported by the National Natural Science Foundation(Instrument)of China(50427401)the National High Technology Research and Development Program of China(2006AA06Z119)+1 种基金the National Key Technology R&D Program in 11th Five Years Plan of China(2007BA29B01)the New Century Excellent Talents in University(NCET-06-0477)
文摘By analyzing the characteristics and the production mechanism of rock burstthat goes with abnormal gas emission in deep coal seams,the essential method of eliminatingabnormal gas emission by eliminating the occurrence of rock burst or depressingthe magnitude of rock burst was considered.The No.237 working face was selected asthe typical working face contacting gas in deep mining;aimed at this working face,a systemof rock burst prediction and control for coal seam contacting gas in deep mining wasestablished.This system includes three parts:① regional prediction of rock burst hazardbefore mining,② local prediction of rock burst hazard during mining,and ③ rock burstcontrol.