Surrounding rock control in the overlying protective coal seam is a challenging topic for de-stressed mining of multi-seamed coal.Current research findings on roadway control were used in the design of a physical mode...Surrounding rock control in the overlying protective coal seam is a challenging topic for de-stressed mining of multi-seamed coal.Current research findings on roadway control were used in the design of a physical model of a complex textured roof having a varying thickness.The model was used to study roadway instability and collapse caused by dynamic pressure.The results show that when the thickness of the roof exceeds the bolted depth the roadway security is least and the roof has the greatest possibility for collapse.Numerical simulations were also carried out to study stress redistribution before and after roadway excavation during underlying protective seam mining.The evolution of roadway displacement and fracture,as affected by support methods,has been well studied.A series of support principles and technologies for mining affected roadways has been proposed after demonstration of successful practical application in the Huainan Mines.These principles and technologies are of extended value to deep coal mining support in China.展开更多
The influence of an upper,mined coal seam on the stability of rock surrounding a roadway in a lower coal seam is examined.The technical problems of roadway control are discussed based on the geological conditions exis...The influence of an upper,mined coal seam on the stability of rock surrounding a roadway in a lower coal seam is examined.The technical problems of roadway control are discussed based on the geological conditions existing in the Liyazhuang Mine No.2 coal seam.The stress distribution and floor failure in the lower works after mining the upper coal is studied through numerical simulations.The failure mechanism of the roof and walls of a roadway located in the lower coal seam is described.The predicted deformation and failure of the roadway for different distances between the two coal seams are used to design two ways of supporting the lower structure.One is a combined support consisting of anchors with a joist steel tent and a combined anchor truss.A field test of the design was performed to good effect.The results have significance for the design of supports for roadways located in similar conditions.展开更多
基金Financial support for this work,provided by the National Key Technology R&D Program(No.2007BAK28B00)the National Natural Science Foundation for the Youth of China(No.50904064)+2 种基金the Research Fund for the Youth of China University of Mining & Technology(No.2008A004)the State Key Laboratory of Coal Resources and Safe Mining,CUMT(No.SKLCRSM09X03)the Research Fund of the State Key Laboratory of Coal Resources and Mine Safety,CUMT(No.08KF10)
文摘Surrounding rock control in the overlying protective coal seam is a challenging topic for de-stressed mining of multi-seamed coal.Current research findings on roadway control were used in the design of a physical model of a complex textured roof having a varying thickness.The model was used to study roadway instability and collapse caused by dynamic pressure.The results show that when the thickness of the roof exceeds the bolted depth the roadway security is least and the roof has the greatest possibility for collapse.Numerical simulations were also carried out to study stress redistribution before and after roadway excavation during underlying protective seam mining.The evolution of roadway displacement and fracture,as affected by support methods,has been well studied.A series of support principles and technologies for mining affected roadways has been proposed after demonstration of successful practical application in the Huainan Mines.These principles and technologies are of extended value to deep coal mining support in China.
基金supported by the National Natural Science Foundation of China (No.50874103)the National Basic Research Program of China (No.2010CB226805)+1 种基金the Natural Science Foundation of Jiangsu Province (No.BK2008135)by the Open Foundation of State Key Laboratory of Geomechanics and Deep Underground Engineering (No.SKLGDUEK0905)
文摘The influence of an upper,mined coal seam on the stability of rock surrounding a roadway in a lower coal seam is examined.The technical problems of roadway control are discussed based on the geological conditions existing in the Liyazhuang Mine No.2 coal seam.The stress distribution and floor failure in the lower works after mining the upper coal is studied through numerical simulations.The failure mechanism of the roof and walls of a roadway located in the lower coal seam is described.The predicted deformation and failure of the roadway for different distances between the two coal seams are used to design two ways of supporting the lower structure.One is a combined support consisting of anchors with a joist steel tent and a combined anchor truss.A field test of the design was performed to good effect.The results have significance for the design of supports for roadways located in similar conditions.