To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB)...To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB). The stress–strain curves of specimens under impact loading were obtained, and then four indexes affected by temperature were analyzed in the experiment: the longitudinal wave velocity, elastic modulus, peak stress and peak strain. Among these indexes, the elastic modulus was utilized to express the specimens' damage characteristics. The results show that the stress–strain curves under impact loading lack the stage of micro-fissure closure and the slope of the elastic deformation stage is higher than that under static loading. Due to the dynamic loading effect, the peak stress increases while peak strain decreases. The dynamic mechanical properties of coal rock show obvious temperature effects. The longitudinal wave velocity, elastic modulus and peak stress all decrease to different extents with increasing temperature, while the peak strain increases continuously. During the whole heating process, the thermal damage value continues to increase linearly, which indicates that the internal structure of coal rock is gradually damaged by high temperature.展开更多
Stress distribution rules and deformation and failure properties of coal and rockbodies influenced by mining were analyzed.Experimental research on permeability of coaland rock samples under different loading conditio...Stress distribution rules and deformation and failure properties of coal and rockbodies influenced by mining were analyzed.Experimental research on permeability of coaland rock samples under different loading conditions was finished in the laboratory.In-situmeasurement of coal permeability influenced by actual mining was done as well.Theoryanalysis show that permeability varied with damage development of coal and rock understress,and the influence of fissure on permeability was greatest.Laboratory results showthat under different loading conditions permeability was different and it varied with stress,which indicated that permeability was directly related to the loading process.In-situ testsshowed that permeability is related to abutment stress to some degree.The above resultsmay be referenced to gas prevention and drainage.展开更多
More accurate forecasting of rock burst might be possible from observations of electromagnetic radiation emitted in the mine.We analyzed experimental observations and field data from the Muchengjian coal mine to study...More accurate forecasting of rock burst might be possible from observations of electromagnetic radiation emitted in the mine.We analyzed experimental observations and field data from the Muchengjian coal mine to study the relationship between electromagnetic radiation signal intensity and stress during the fracturing of coal, or rock, and samples under load.The results show that the signal intensity is positively correlated with stress.In addition, we investigated the change in the electromagnetic radiation intensity, the supporting resistance in a real coal mine environment, and the coal or rock stress in the mining area.The data analysis indicates that:1) electromagnetic radiation intensity can accurately reflect the distribution of stress in the mining area;and, 2) there is a correlation between electromagnetic radiation intensity and supporting resistance.The research has some practical guiding significance for rock burst forecasting and for the prevention of accidents in coal mines.展开更多
Given the difficulties encountered in roadway support under coal pillars,we studied the characteristics of stress distribution and their effect on roadway stability,using theoretical analysis and numerical simulation....Given the difficulties encountered in roadway support under coal pillars,we studied the characteristics of stress distribution and their effect on roadway stability,using theoretical analysis and numerical simulation.The results show that,under a coal pillar,vertical stress in a floor stratum increases while horizontal stress decreases.We conclude that the increased difference between vertical and horizontal stress is an important reason for deformation of the surrounding rock and failures of roadways under coal pillars.Based on this,we propose control technologies of the surrounding rock of a roadway under a coal pillar,such as high strength and high pre-stressed bolt support,cable reinforcement support single hydraulic prop with beam support and reinforcement by grouting of the surrounding rock,which have been successfully applied in a stability control project of a roadway under a coal pillar.展开更多
Considering the serious coal and rock dynamic disasters around the main slip plane called F16 in the coal mining area) of Henan Yima(China) thrust nappe structure,the mechanical genesis of the Yima thrust nappe struct...Considering the serious coal and rock dynamic disasters around the main slip plane called F16 in the coal mining area) of Henan Yima(China) thrust nappe structure,the mechanical genesis of the Yima thrust nappe structure was studied comprehensively using geomechanics,fault mechanics,elastic mechanics,and Coulomb's law of friction.First,using the centrifugal inertia force of Earth's rotation as a source,a mechanical model of N-S compression superimposed with W-E reverse torsion was established to explain the formation of the early Yima coal basin and Jurassic Yima Group coal measures.Second,an equation for the ultimate stress in the forming stage of F16 was derived using the plastic slip-line field theory and the parabolic Mohr failure criterion.Moreover,the distribution of ultimate stress and the geometric characteristics of the fault profile were obtained using the field model parameters.Finally,the stress field of F16 and the mechanical genesis of the large-scale reverse thrust sheet were discussed based on elastic mechanics theory and Coulomb's law of friction.The results show that the tectonic framework of the early Yima coal basin and the formation pattern of Jurassic Yima Group coal measures given by the model are consistent with the in-situ explorations.The geometric characteristics of the fault profile obtained by numerical calculation can better reflect the shape of F16 in its forming stage,and the mechanical genesis of the large-scale reverse thrust sheet also concurred with the field situations.Thus,this work can provide a foundation for further studies on the genesis of the thrust nappe structure,the mechanism of rock bursts induced by F16,and the characteristics of the residual stress field in the Yima mining area.展开更多
In this study, the characteristics of geological structure at Qingshui coal mine were analyzed. And the hollow inclusion strain cell overcoring method was used to obtain the in situ stress. The effect of in situ stres...In this study, the characteristics of geological structure at Qingshui coal mine were analyzed. And the hollow inclusion strain cell overcoring method was used to obtain the in situ stress. The effect of in situ stress on the stability of soft rock roadway was analyzed. The results show that the maximum principal stress is in the horizontal direction with a northeast orientation and has a value of about 1.2–1.9 times larger than gravity; the right side of roadway roof and floor is easily subject to serious deformation and failure, and the in situ stress is found to be a major factor. This paper presents important information for developing countermeasures against the large deformation of the soft rock roadway at Qingshui coal mine.展开更多
According to the specific geological condition, analyzed the stress distribution of the overlying strata, the displacement of pressure released seam, thickness variation and the distribution of plastic zones by FLAG3D...According to the specific geological condition, analyzed the stress distribution of the overlying strata, the displacement of pressure released seam, thickness variation and the distribution of plastic zones by FLAG3D software to simulate mining of the long-distance lower protective seam. The research results show that the distribution of vertical stress appears as a "Double-hump" within the pressure-relief range of the protected coal seam and the swelling deformation curve of coal bodies takes an "M" shape. The swelling is divided into initial swelling, swelling increase and swelling compression stability. The maximum swelling ratio of the pressure released seam is 1.84%, protection angle of the lower protective coal seam along the strike direction is about 55°, protection angle below the dip direction is about 50°, protection angle above the dip direction is about 55°, and the coal seam compression zone resembles a "U" shape.展开更多
In order to explore the influence of different caving thicknesses on the MSS distributionand evolving characteristics of surrounding rocks in unsymmetrical disposal andfully mechanized top-coal caving (FMTC),based on ...In order to explore the influence of different caving thicknesses on the MSS distributionand evolving characteristics of surrounding rocks in unsymmetrical disposal andfully mechanized top-coal caving (FMTC),based on unsymmetrical disposal characteristics,the analyses of numerical simulation,material simulation and in-situ observation weresynthetically applied according to the geological and technical conditions of the 1151(3)working face in Xieqiao Mine.The results show that the stress peak value of the MSS-baseand the ratio of MSS-body height to caving thickness are nonlinear and inverselyproportional to the caving thickness.The MSS-base width,the MSS-body height,theMSS-base distance to working face wall and the rise distance of MSS-base beside coalpillar are nonlinear and directly proportional to the caving thickness.The characteristics ofMSS distribution and its evolving rules of surrounding rocks and the integrated cavingthickness effects are obtained.The investigations will provide lots of theoretic referencesto the surrounding rocks' stability control of the working face and roadway,roadway layout,gas extraction and exploitation,and efficiency of caving,etc.展开更多
基金Projects(41272304,51304241,51204068)supported by the National Natural Science Foundation of ChinaProject(2014M552164)supported by the Postdoctoral Science Foundation of ChinaProject(20130162120015)supported by the PhD Programs Foundation of Ministry of Education of China
文摘To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB). The stress–strain curves of specimens under impact loading were obtained, and then four indexes affected by temperature were analyzed in the experiment: the longitudinal wave velocity, elastic modulus, peak stress and peak strain. Among these indexes, the elastic modulus was utilized to express the specimens' damage characteristics. The results show that the stress–strain curves under impact loading lack the stage of micro-fissure closure and the slope of the elastic deformation stage is higher than that under static loading. Due to the dynamic loading effect, the peak stress increases while peak strain decreases. The dynamic mechanical properties of coal rock show obvious temperature effects. The longitudinal wave velocity, elastic modulus and peak stress all decrease to different extents with increasing temperature, while the peak strain increases continuously. During the whole heating process, the thermal damage value continues to increase linearly, which indicates that the internal structure of coal rock is gradually damaged by high temperature.
基金Supported by the National Major Fundamental Research Program of China(973 Project)(2005CB221503)National Science Foundation of China(50544010)
文摘Stress distribution rules and deformation and failure properties of coal and rockbodies influenced by mining were analyzed.Experimental research on permeability of coaland rock samples under different loading conditions was finished in the laboratory.In-situmeasurement of coal permeability influenced by actual mining was done as well.Theoryanalysis show that permeability varied with damage development of coal and rock understress,and the influence of fissure on permeability was greatest.Laboratory results showthat under different loading conditions permeability was different and it varied with stress,which indicated that permeability was directly related to the loading process.In-situ testsshowed that permeability is related to abutment stress to some degree.The above resultsmay be referenced to gas prevention and drainage.
基金Projects 50427401 supported by the National Natural Science Foundation of China2006AA06Z119 by the Hi-tech Research and Development Program of China+2 种基金NCET-06-0477 by the New Century Excellent Talent Plan of Ministry of Education2007A002 by the Science & Research Foundation for Youth of China University of Mining and Technologythe Na-tional Basic Research Program of China (2005cb221505)
文摘More accurate forecasting of rock burst might be possible from observations of electromagnetic radiation emitted in the mine.We analyzed experimental observations and field data from the Muchengjian coal mine to study the relationship between electromagnetic radiation signal intensity and stress during the fracturing of coal, or rock, and samples under load.The results show that the signal intensity is positively correlated with stress.In addition, we investigated the change in the electromagnetic radiation intensity, the supporting resistance in a real coal mine environment, and the coal or rock stress in the mining area.The data analysis indicates that:1) electromagnetic radiation intensity can accurately reflect the distribution of stress in the mining area;and, 2) there is a correlation between electromagnetic radiation intensity and supporting resistance.The research has some practical guiding significance for rock burst forecasting and for the prevention of accidents in coal mines.
基金the National Natural Science Foundation of China(No.50774077)the State Key Laboratory of Coal Resources and Safe Mining Autonomous Study Subject Foundation of China(No.SKLCRSM08X04)+2 种基金the National Basic Research Program of China,the National Excellence Doctor Degree Dissertation Special Foundation of China(No.200760)the New Century Talent Support Program of the Ministry of Education of China(No.NCET-06-0475)the Youth Scientific Research Foundation of China University of Mining & Technology(No. 2008A002)
文摘Given the difficulties encountered in roadway support under coal pillars,we studied the characteristics of stress distribution and their effect on roadway stability,using theoretical analysis and numerical simulation.The results show that,under a coal pillar,vertical stress in a floor stratum increases while horizontal stress decreases.We conclude that the increased difference between vertical and horizontal stress is an important reason for deformation of the surrounding rock and failures of roadways under coal pillars.Based on this,we propose control technologies of the surrounding rock of a roadway under a coal pillar,such as high strength and high pre-stressed bolt support,cable reinforcement support single hydraulic prop with beam support and reinforcement by grouting of the surrounding rock,which have been successfully applied in a stability control project of a roadway under a coal pillar.
基金Project(2010CB226805) supported by the National Basic Research Program of ChinaProject(CXLX13-949) supported by the Research and Innovation Project for College Graduates of Jiangsu Province,China+1 种基金Project(51174285) supported by the National Natural Science Foundation of ChinaProject(SZBF2011-6-B35) supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Considering the serious coal and rock dynamic disasters around the main slip plane called F16 in the coal mining area) of Henan Yima(China) thrust nappe structure,the mechanical genesis of the Yima thrust nappe structure was studied comprehensively using geomechanics,fault mechanics,elastic mechanics,and Coulomb's law of friction.First,using the centrifugal inertia force of Earth's rotation as a source,a mechanical model of N-S compression superimposed with W-E reverse torsion was established to explain the formation of the early Yima coal basin and Jurassic Yima Group coal measures.Second,an equation for the ultimate stress in the forming stage of F16 was derived using the plastic slip-line field theory and the parabolic Mohr failure criterion.Moreover,the distribution of ultimate stress and the geometric characteristics of the fault profile were obtained using the field model parameters.Finally,the stress field of F16 and the mechanical genesis of the large-scale reverse thrust sheet were discussed based on elastic mechanics theory and Coulomb's law of friction.The results show that the tectonic framework of the early Yima coal basin and the formation pattern of Jurassic Yima Group coal measures given by the model are consistent with the in-situ explorations.The geometric characteristics of the fault profile obtained by numerical calculation can better reflect the shape of F16 in its forming stage,and the mechanical genesis of the large-scale reverse thrust sheet also concurred with the field situations.Thus,this work can provide a foundation for further studies on the genesis of the thrust nappe structure,the mechanism of rock bursts induced by F16,and the characteristics of the residual stress field in the Yima mining area.
基金provided by the Beijing Natural Science Foundation(No.8142032)the National Natural Science Foundation of China(No.41040027)+2 种基金the State Key Program of National Natural Science of China(No.5113400)the Research Fund for the Doctoral Program of Higher Education(No.20130023110021)the Special Fund of Basic Research and Operating Expenses of State Key Laboratory of Geomechanics and Deep Underground Engineering,China University of Mining&Technology,Beijing
文摘In this study, the characteristics of geological structure at Qingshui coal mine were analyzed. And the hollow inclusion strain cell overcoring method was used to obtain the in situ stress. The effect of in situ stress on the stability of soft rock roadway was analyzed. The results show that the maximum principal stress is in the horizontal direction with a northeast orientation and has a value of about 1.2–1.9 times larger than gravity; the right side of roadway roof and floor is easily subject to serious deformation and failure, and the in situ stress is found to be a major factor. This paper presents important information for developing countermeasures against the large deformation of the soft rock roadway at Qingshui coal mine.
基金Supported by the Basic Research Program of National Natural Science Foundation of China(50834005)
文摘According to the specific geological condition, analyzed the stress distribution of the overlying strata, the displacement of pressure released seam, thickness variation and the distribution of plastic zones by FLAG3D software to simulate mining of the long-distance lower protective seam. The research results show that the distribution of vertical stress appears as a "Double-hump" within the pressure-relief range of the protected coal seam and the swelling deformation curve of coal bodies takes an "M" shape. The swelling is divided into initial swelling, swelling increase and swelling compression stability. The maximum swelling ratio of the pressure released seam is 1.84%, protection angle of the lower protective coal seam along the strike direction is about 55°, protection angle below the dip direction is about 50°, protection angle above the dip direction is about 55°, and the coal seam compression zone resembles a "U" shape.
基金Supported by National Basic Research Program(973)(2005cb221503)National Natural Science Foundation of China(50674003)Science and Technological Fund of Anhui Province for Outstanding Youth(08040106839)
文摘In order to explore the influence of different caving thicknesses on the MSS distributionand evolving characteristics of surrounding rocks in unsymmetrical disposal andfully mechanized top-coal caving (FMTC),based on unsymmetrical disposal characteristics,the analyses of numerical simulation,material simulation and in-situ observation weresynthetically applied according to the geological and technical conditions of the 1151(3)working face in Xieqiao Mine.The results show that the stress peak value of the MSS-baseand the ratio of MSS-body height to caving thickness are nonlinear and inverselyproportional to the caving thickness.The MSS-base width,the MSS-body height,theMSS-base distance to working face wall and the rise distance of MSS-base beside coalpillar are nonlinear and directly proportional to the caving thickness.The characteristics ofMSS distribution and its evolving rules of surrounding rocks and the integrated cavingthickness effects are obtained.The investigations will provide lots of theoretic referencesto the surrounding rocks' stability control of the working face and roadway,roadway layout,gas extraction and exploitation,and efficiency of caving,etc.